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Abstract—Recent work in literary sentiment analysis has
suggested that shifts in emotional valence may serve as a reliable
proxy for plot movement in novels. The raw sentiment time series
of a novel can now be extracted using a variety of different
methods, and after extraction, filtering is commonly used to
smooth the irregular sentiment time series. Using an adaptive
filter, which is among the most effective in determining trends of
a signal, reducing noise, and performing fractal and multifractal
analysis, we show that the energy of the smoothed sentiment
signals decays with the smoothing parameter as a power-law,
characterized by a Hurst parameter H of 1/2 < H < 1,
which signifies long-range correlations. We further show that
a smoothed sentiment arc corresponds to the sentiment of fast
playing mode or sentiment retained in one’s memory, and that
for a novel to be both captivating and rich, H has to be larger
than 1/2 but cannot be too close to 1.

I. INTRODUCTION

Affective computing and sentiment analysis are important
tasks of AI, with applications ranging from automated analysis
of reviews and social media for purposes of marketing and
customer service, to the monitoring of political issues, among
many others [1]. This stems from the assumption that emotions
play an important role in communications among human
beings, as well as in rational learning. While significant efforts
have been made to detect sentiment [1], [2], [3], the analysis
carried out thus far has largely been confined to detecting a
polarity, or a mood, according to a limited set of emotions.
Computational sentiment analysis thus has contributed little
to a deep understanding of the theories of emotions, which
are thought to involve many components, such as motivation,
feeling, behavior, physiological changes, and evolution. Is the
time ripe for computational sentiment analysis to go one step
further to help gain some insights into any of the components
for the theory of emotions? We show here that the sentiment
dynamics of literature offer an excellent venue for studying
the dynamical evolution of sentiment.

Recent work in literary text analysis has suggested that,
shifts in sentiment can serve as a useful proxy for plot devel-
opment [4], [5]. Remarkably, sentiment time series can now be
consistently extracted from a novel by a few different methods
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Fig. 1. Sentiment time series of Madame Bovary, where blue, red, and green
are for raw, smoothed data with w = 29, and smoothed data with w = 501,
respectively.

[6], [7]. As the raw sentiment time series is very irregular, the
raw data are typically filtered to yield a fairly smooth curve
representing the macro-scale trend in the sentiment time series.
Two examples are shown in Fig. 1 and 2, where the irregular
blue curves are the raw sentiments, and the green and red
curves are the filtered sentiments with the filter time scale
parameter indicated in part (a) of the figures. Since the red
curves are close to zero, the values are rescaled to the range
of [−1, 1] before they are plotted. This is shown as the red
curves in part (b) of the figures. Since even the red curves are
often not sufficiently smooth to reveal the macro-shape of the
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Fig. 2. Sentiment time series of Gone Girl. where blue, red, and green are
for raw, smoothed data with w = 29, and smoothed data with w = 501,
respectively.

series, they are either further filtered, or the raw sentiment
is filtered with a time scale parameter larger than that for
obtaining the red curves. Two examples are again shown as the
black curves in part (b) of Fig. 1 and 2. The filter employed
here is a nonlinear adaptive filter [8], [9], [10], which is among
the most effective in determining trends, reducing noise, and
performing fractal and multifractal analysis. The details of the
filter will be presented in the Methodology section.

Human validation experiments indicate that machine derived
sentiment arcs are closely correlated with sentiment arcs
derived from human coded data [11], [6]. All of this prompts
one to ask: what can one infer from a smooth sentiment
time series about the plot development of a novel? When
one seriously thinks along this line, one will realize that any
smoothed sentiment time series is important; yet, no single
smooth sentiment time series corresponding to a specific time
scale provides sufficient, or complete, information about the
plot development. This, in turn, leads one to ask a fundamental
question: How does the sentiment “decay with time”? We
show here that an elegant generic multiscale theory about
sentiment can be developed based on random fractal theory.

One of the main models in random fractal theory is the 1/fα

processes, where α = 2 corresponds to the standard Brownian
motion. Activities of many complex systems are characterized
by such processes. A sub-class of such processes, denoted
as 1/f2H+1, is called processes with long-range correlations
(or long memories) characterized by a Hurst parameter H .
Depending on whether 0 < H < 1/2, H = 1/2, or

1/2 < H < 1 [14], they are said to have antipersistent
correlations, memoryless or only short-range correlations, or
persistent long-range correlations. Prominent examples of such
processes include vision [15], DNA sequences [16], [17],
[18], [19], [20], human cognition [21] and coordination [22],
posture [23], cardiac dynamics [24], [25], [26], [27], as well
as the distribution of prime numbers [28], to name but a few.
Here, we will show that sentiment time series extracted from
novels always possess long-range correlations characterized by
a Hurst parameter H greater than 1/2.

II. METHODS

A covariance stationary stochastic process X = {Xt : t =
0, 1, 2, . . .}, with mean µ, variance σ2, and autocorrelation
function r(k), k ≥ 0, is said to have long-range temporal
correlation if the autocorrelation function r(k) is of the
form [12]

r(k) ∼ k2H−2, as k →∞, (1)

where 0 < H < 1 is the Hurst parameter. When 1/2 <
H < 1,

∑
k r(k) = ∞, leading to long-range temporal

correlation. The process X has a power-spectral density (PSD)
of 1/f2H−1. Its integration, called a random walk process (and
cumulative sentiment when applied to sentiment), has a PSD
of 1/f2H+1. Being a 1/f process, it cannot be aptly modeled
by a Markov process or an ARIMA model [13], since the
PSD for those processes are distinctly different from 1/f . To
adequately model a 1/f process, a fractional order process has
to be used. A well-known process of this class is the fractional
Brownian motion model [14].

Since smoothing is a key issue in sentiment analysis, let
us consider the effect of smoothing irregular sentiment time
series X = {Xt : t = 0, 1, 2, . . .} by constructing a new time
series

X(n) = {X(n)
t : t = 1, 2, 3, . . .}, n = 1, 2, 3, . . . ,

obtained by simple nonoverlapping averaging,

X
(n)
t = (Xtn−n+1 + · · ·+Xtn)/n, t ≥ 1 . (2)

For ideal fractal processes, there is an interesting scaling law
for the variance of X(n)

t on the aggregation level n [29], [30]

var(X(n)) = σ2n2H−2 (3)

where σ2 is the variance of the original data. Eq. (3) offers
an excellent means of understanding H . For example, if H =
0.50, n = 100, then var(X(n)) = σ2/100. When H = 0.75,
in order to have var(X(n)) = σ2/100, then we need n = 104,
which is much larger than n = 100 for the case of H =
0.50. On the other hand, when H = 0.25, if we still want
var(X(n)) = σ2/100, then n ≈ 21.5, which is much smaller
than n = 100, the case of H = 0.50. An interesting lesson
from such a simple discussion is that if a time series is short
while its H is close to 1, then smoothing is not a viable option
for reducing the variations there.

While theoretically, moving average smoothing is a valid
filter, in practice, it is among the least effective. Therefore,



we need a better filter. Here we employ a nonlinear adaptive
filter, which has been shown to be among the most effective in
determining trends, reducing noise, and estimating the Hurst
parameter [8], [9], [10]. The method works as follows. It first
partitions a time series into segments (or windows) of length
w = 2n+1 points, where neighboring segments overlap by n+
1 points. While this has ensured symmetry, it also introduces
a time scale of w+1

2 τ = (n + 1)τ , where τ is the sampling
time. For each segment, we fit a best polynomial of order M .
Note that M = 0 and 1 correspond to piece-wise constant
and linear fitting, respectively. Denote the fitted polynomial
for the i-th and (i + 1)-th segments by y(i)(l1), y

(i+1)(l2),
l1, l2 = 1, · · · , 2n+1, respectively. Note the length of the last
segment may be smaller than 2n+1. We define the fitting for
the overlapped region as

y(c)(l) = w1y
(i)(l + n) + w2y

(i+1)(l), l = 1, 2, · · · , n+ 1
(4)

where w1 =
(
1 − l−1

n

)
, w2 = l−1

n can be written as
(1− dj/n), j = 1, 2, where dj denotes the distances between
the point and the centers of y(i) and y(i+1), respectively.
This means the weights decrease linearly with the distance
between the point and the center of the segment. Such a
weighting ensures symmetry and effectively eliminates any
jumps or discontinuities around the boundaries of neighboring
segments. In fact, the scheme ensures that the fitting is
continuous everywhere, is smooth at the non-boundary points,
and has the right- and left-derivatives at the boundary. The
method can effectively determine any kind of trend signal.
Note that with the adaptive filter described here, Eq. (3) is
still valid if one equates the time scale n to (w + 1)/2 and
X

(n)
t to the trend signal, noticing that the time scale introduced

by the adaptive filter with w = 2n+ 1 is n+ 1.

III. RESULTS AND DISCUSSIONS

We have computed the variance of the trend signals for a
wide range of time scales t for the machine derived sentiment
time series in 13 novels, and we have examined whether
the scaling relation described by Eq. (3) holds or not. The
answer is positive. Four examples are shown in Fig. 3, with
H indicated in each sub-plot. For all the 13 sentiment time
series, H is in between 1/2 and 1. Therefore, all 13 sentiment
time series possess long-range correlations.

The long-range correlations in sentiment time series de-
scribed by Eq. (3) give a comprehensive description on how
sentiment may change with a smoothing parameter. In par-
ticular, we note that the trend signal corresponding to a time
scale of t amounts to the sentiment of fast playing mode with
certain speed, or the memory of emotions once aroused.

In this sense, the raw, irregular sentiment corresponds to
the “instantaneous” sentiment experienced by a reader on a
sentence by sentence basis. Alternatively, when the sentiment
data is smoothed with a larger time scale, the remaining
sentiment variation reflects how the development of a novel
is remembered by an “average” brain after the novel has been
read. Sentiment in memory is necessarily weak, even though
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Fig. 3. Variance time analysis of four raw sentiment time series. The blue
circles denote the results from the sentiment time series, the red line is the
best linear least squares fitting, and the dashed green lines correspond to the
case of H = 1/2.

initially an emotion could run exceedingly high. With this
understanding, it is clear how a trend signal s(t) may serve
as a constraint for faithful adaptation/abbreviation of a long
novel. Such an interpretation serves as the starting point for a
multiscale theory of sentiment.

We also note that although the adaptive filter employed here
does not suffer from edge problems, sentiment in edges may
not be resolved by s(t) with large t, since the time scales
do not match. This is a fundamental property of sampling: to
resolve variations of certain frequency, the sampling frequency
has to be at least twice the frequency of the variation.

To better appreciate why 1/2 < H < 1, we emphasize that
H > 1/2 captures the very fact that an emotion aroused by
certain plot development will not instantly die out; rather, it
will persist for a while, due to the memory effect. Therefore,
this is a necessary condition for a novel to be captivating.
On the other hand, in order to have a rich and varied plot
development, H cannot be close to 1.

While sentiment time series of different novels may have a
comparable Hurst parameter, it is important to keep in mind
that the spikes, troughs, and zeros of the smooth trend signals
of sentiment are unique to each novel. That is the fundamental
reason that sentiment may be considered a proxy or skeleton
of unique plot development. Of course, to comprehensively
characterize a novel, one needs to address many other ele-
ments, such as stylistics, thematics, character interactions and
their dynamical evolution, and the interplay between what
might be characterized as “action” scenes and digressions of a
more philosophical or meditative nature (which are very likely
connected with periods of “zero” sentiment, etc.). This is a
gigantic task, and hence a vast field, rich in potential.

What is important is that the dynamical structure of sen-
timent is a self-similar process with long-range correlations.
Moreover, the fractal long-range correlations in the sentiment



evolution of plots in literature may have important implications
to sentiment analysis of reviews, web contents, and public
opinion monitoring. In particular, when considering the space
of a large number of people expressing positive or negative
sentiments, the temporal long-range correlations will bring
about a well-defined polarity.
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