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Abstract – Sybil detection is an important task in cyber 

security research. Over past years, many data mining algorithms 

have been adopted to fulfill such task. Using classification and 

regression for sybil detection is a very challenging task. Despite 

of existing research made toward modeling classification for sybil 

detection and prediction, this research has proposed new solution 

on how sybil activity could be tracked to address this challenging 

issue. Prediction of sybil behaviour has been demonstrated by 

analysing the graph-based classification and regression 

techniques, using decision trees and described dependencies 

across different methods. Calculated gain and maxGain helped to 

trace some sybil users in the datasets. 

Keywords—Classification and regression, C4.5; sybil detection, 

mobile social network, entropy model, decision tree, random forest, 

behaviour analytics. 

I. INTRODUCTION 

A huge amount of data is being collected and stored in 

databases across the world and its space stations, and this trend 

continues to increase year upon year. So much valuable 

knowledge is hidden in these database, it is practically 

impossible to mine them without an automatic extraction 

method. Over past years, many algorithms, called nuggets, 

have been created to extract this knowledge using various 

methodologies such as classification, association rules, 

clustering, and many more. 

Sybil detection is an important topic in cyber security 

research. The evolution of sybil defense protocols have 

leveraged the structural properties of the social graph, with an 

underlying distributed system, to identify sybil identities. 

Researcher team first clarified the deep connection between 

sybil defense and the theory of random walks which led to a 

community detection algorithm that, for the first time, offered 

provable guarantees in the context of sybil defense [2]. 

Proposed research the sybil guard approach explains, sybil 

guard, is a new protocol for defending against sybil attacks 

without relying on a trusted central authority [4]. Sybil guard 

exploits this property to bind the number of identities a 

malicious user can create. The researchers proved the 

effectiveness of sybil guard both analytically and 

experimentally [5]. Network of friends contain the honest 

devices, and its networks of foes contain the suspicious 

devices. With the help of these two networks, the device is then 

able to determine whether an unknown individual is carrying 

out a sybil attack or not [6]. Mining (Social) Network Graphs 

to Detect Random Link Attacks research mine the social 

networking graph extracted from user interactions in the 

communication network to find RLAs and formally define 

RLA and show that the problem of finding an RLA is (theory) 

NP-complete [7]. Discussing defending sybil attacks in specific 

types of MSNs based on the past focus researchers. Research 

proposed a security mechanism to detect and eliminate sybil 

nodes [8]. Researched on sybil attacks and their defense in the 

IoT proposed survey sybil attack and defense system in IoT. 

Their research explained about the types of sybil attacks 

considering sybil attacker’s capabilities. Also, the research 

presented some sybil defense schemes, with a social graph 

based sybil detection, behaviour classification based sybil 

detection and mobile sybil detection with the comprehensive 

comparisons [9]. Sybil attackers frequently change their 

pseudonyms to cheat other users. Researcher investigated the 

contact statistics of the used pseudonyms and detected sybil 

attackers by comparing the contact statistics of pseudonyms 

from normal users and that from sybil attackers [10].  

II. CLASSIFICATION MODELS FOR SYBIL DETECTION 

Classification consists of predicting a certain outcome, 

based on a given set of inputs. Typically, an algorithm 

processes a training set, containing a set of attributes and the 

respective outcome, to discover the relationships between the 

attributes that make the outcome possible. The algorithm is 

then given an unseen dataset, called the prediction set, which 

contains a similar set of attributes without the outcome. The 

algorithm then analyses the input and attempts to produce a 

prediction.  

Classification models help to predict categorical class 

labels, which may be discrete or nominal. Constructed models 

classify data based on a training set and use the resulting class 

labels values as attributes with which to classify new data. 



 

 

Decision trees are a very popular method of classification 

for supervised learning with nominal classes that have 

dependent labels. Using decision trees to predict nominal class 

behaviour given a simple ‘yes’ or ‘no’ is straightforward. 

However in some cases, nominal classes can specify more than 

two options, and hence which kind of entities responded to 

which options can be classified and/or predicted. 

The first step in the development of this classification 

model was to evaluate the dataset using a decision tree. 

A decision tree was built by first searching for users 

identified as suspicious. These users were split into the mostly 

evenly divided groups, given a set of observations and their 

features. Currently mixed up column 1 or User 1 and column 2 

or User 2 connections with other respective columns of starting 

time, ending time including, etc. 

This decision tree helped to classify the model according to 

previous observations, but dividing the nodes into group 

presented new questions:  

1. Does this user connect to specific user regularly or do 

they connect randomly to anyone? 

2. Is there a chance that this user might connect to each 

and every available node?  

3. If they connect regularly, do they reconnect with 

friends or to other random nodes? 

The decision trees generated by C4.5 can be used for 

classification and regression. The C4.5 algorithm is developed 

by Ross Quinlan, which use to generate decision trees.  It is an 

extension of Quinlan's earlier ID3 algorithm. C4.5 often 

referred to as a statistical classifier. 

At each node of the tree, C4.5 chooses the data attribute that 

most effectively splits its set of samples into subsets enriched 

in one class or the other. The splitting criterion is the 

normalized information gain (ie Kullback–Leibler divergence) 

and the difference in entropy (ie information theory). The 

attribute with the highest normalised information gain is 

chosen to make the decision. The C4.5 algorithm then recurs 

on the smaller sub-lists. 

A. The C4.5 Algorithm 

This algorithm has a few base cases. All the samples in the 

list belong to the same class. When this happens, it simply 

creates a leaf node for the decision tree saying to choose that 

class. None of the features provide any information gain. In 

this case, C4.5 creates a decision node higher up the tree using 

the expected value of the class. Instance of previously-unseen 

class encountered. Again, C4.5 creates a decision node higher 

up the tree using the expected value. 

•The algorithm operates over a 

set of training instances, C. 

•If all instances in C are in class 

P, create a node P and stop, 

otherwise select a feature or 

attribute F and create a decision 

node. 

•Partition the training instances 

in C into subsets according to the values of V. 

•Apply the algorithm recursively to each of the subsets C. 

 

Fig. 1. Decision tree process 

The research explain why this approach works, and why it 

is better for finding sybil users and their behaviour.  

Further research idea helps to effectively view the data from 

many angles. It also eliminates insignificant features and nodes 

to improve prediction, help build a robust model, and more 

easily draw parallels with other datasets. However, the current 

research scope does not consider several crucial details. Each 

connection set requires an individual model, and observations 

from honest users and their connection times are irrelevant, so 

should be discarded. Building model of many nodes at once 

presents some challenges. We are going to parallelised model 

building by group it by first column single node in future 

research. 

B. Decision trees, entropy and gain 

In this section, decision trees are used to split data in to 

different forms and a number of trees are built based on 

information available in the dataset. 

Decision trees work very differently than naïve Bayes. 

When predicting a sybil user using a decision tree, all the nodes 

and their possible connections need to be observed. For 

example, the Infocom06 dataset records 98 users, connecting to 

over 4000 users multiple times, which generates more than 

200,000 connections. The set also includes the length of time 

the nodes were connected and its index values. 

To predict whether or not a user is sybil, each user and their 

connected node are grouped. This procedure is repeated for 

each node in User1 column. The Manual intervention is 

required to determine how many other attempts to predict how 

many other nodes the selected node is connected to. Other 

factors for consideration include: whether the selected node is 

connected to a limited or large number of other nodes; whether 

those nodes have further connections that are limited or large; 

and whether the selected node is connected to other nodes for a 

specific or non-specific time. 

Trees were selected for further random forest processing, 

based on these determinations. The key to generating a 

decision tree for each node is to glean what type of connections 

the node has made and why it made those connections. 

Examining each one of these attributes, such as User1 column 

and User2 column node, start and end  time of connection, 

index values, etc. and try to meet the best interest possible 



Algorithm 1 - C4.5: 
1 Split (node, (number of branch (fi))) 
2 A <- the best attributes for splitting the fi 
3 Decision attributes for this node <- A 
4 For each value of A, create new child node 
5  Split training fi to child nodes 
6  Do each child node / subset 
7  If subset is Pure: STOP 
8  Else 

9  Split (child_node, (subset of fi) 
10 Consider node: Considerably suspicious / honest 
11 Repeat  
12 If subset is Pure: STOP 
13  Consider node: Honest 
14  Consider node: Suspicious 
15 Repeat 
16 If subset is Pure: STOP 
17 Else 
18 Consider node: Sybil and user for RF (Random forest) 

about assuming its connection, whether the selected node is 

suspicious and what other factors may influence the 

consideration of a node as sybil. 

Generally speaking, attributes in the available data are 

examined and then used to split the data into subsets. For 

example, the number of connections a given node has made 

could be: specific (ie regular/honest); limited (ie only few 

connections); or large (ie connect to most of available or more 

than selected average). Additionally, those three subsets will 

contain further subsets of information.  

If subset is pure then it is honest. That means if the node 

had specific connections, and connected over an unspecified 

time, the process will stop. Otherwise it will continue to 

investigate the behaviour and try to further split the data – a 

sort of variation on a divide and conquer algorithm.  

The new datasets were tested for predictions next, to see 

which examples fell into which subsets. The dominant class is 

then used for that subset. For example, if the selected node 

always connects to the average number of nodes for an 

unspecified time, then is it certain that the selected node is 

honest and the branch is split at higher level displaying 

remaining values. 

If the selected node is categorised as suspicious or 

considerably suspicious, the node is divided into even more 

branches based on the start and end time of its connections. 

These branches of the decision tree: have a lower connected 

node count; and/or, are less than or equal to the time difference. 

The tree will split further again if both values are true, 

otherwise the node will be deemed honest. 

The algorithm stops when two pure subsets are found, 

because there is no need for further division after another 

subset is deemed pure, and there is no need to further 

investigate sybil activity. The next node is selected and the tree 

building process is restarted.  The node is considered to be 

honest if there is a high probability of a low connection count, 

and the node has connected with other nodes for an undefined 

specific time. If a node in the second branch of the tree is not 

pure, the algorithm checks for index value and will repeat the 

procedure. If the second branch is also not found to be pure, 

then based on column six of Infocom06 (connection id) value 

of 0’s count (>= avg 0’s count), it will further branch the tree 

and the node will certainly be considered sybil. 

Finding the split: 

Number of branches fi – each feature in dataset 

Let fi be the feature with the greatest gain 

Create a decision node that splits on fi 

For each split Spl on fi, FindSplit(Spl) 

 

Selecting the best attribute: Nodes can be connected based 

on: time of connection; index value; or connection id’s 0’s 

count. There are pros and cons associated with each attribute. 

The purity of splits have to be measured, so the ideal choice is 

the attribute with all pure subsets to help reduce the dataset and 

eliminate data for further examination. 

Some cases have a 50% chance of being pure or impure. So 

split the generated subset in pure side is good and not to split 

the generated subset likewise have complete impurity. A 

matrix that can measure both the purity of the subset and its 

uncertainty is required. The uncertainty value is a measure of 

probability that, after the data of a particular subset is split, a 

random item within that subset is positive or negative. A 

completely uncertain number, with a 50/50 chance of being 

positive or negative, demonstrates that the node is honest or 

suspicious.  

We cannot use a posterior probability ‒ the probability that 

an observation will fall into a group before the data is collected 

‒ because the subset needs to be symmetrical. It means, a pure 

subset or honest node has low regular connection with 

uncertain frequency of time connections which is good 

similarly pure subset or honest node have high connection with 

uncertain frequency of time connections. So it can’t be a 

probability of positive. It must be some that is symmetric of 

positive side and negative side. 

C. Entropy 

Calculating entropy is a way to measure the uncertainty of 

a class in a subset of fi. Entropy is defined as:  

H(S) = -p(+) log2 p(+) – p(-) log2 p(-) bits 

- S is subset of training example 

- p(+) / p(-) … % of positive / negative examples in S 

Entropy calculations are based on binary values of yes and no, 

or 1’s and 0’s and. The original dataset did not have any text 

values. 

Hence, if the impure subset = 1 bit: 

H(S) = - (number of purity / total number) log2 (number of 

purity / total number) - (number of impurity / total number) 

log2 (number of impurity / total number) = 1 bit 

If the subset is pure it = 0 bits: 

H(S) = - (number of purity / total number) log2 (number of 

purity / total number) - (number of impurity / total number) 

log2 (number of impurity / total number) = 0 bits 

Entropy tells us how pure and impure is one set and 

subset. 

Now the information must be segregated from several 

different subsets, because the attribute selected for the split 

has different values. A not-so-simple average is used. The aim 

is to have as many items considered to be honest as possible in 

pure subset, and a drop in entropy after the split is expected: 



Algorithm 2: Entropy generation per user - TimeDiff datasets: 
 
1 Infocom06tbUsers <- Read dataset – Total user frequency count and 
save in data frame 
2 N1 =Calculate length of dataset  
3 Infocom06tbTimeDiff <- Read dataset – user frequency count based 
on TimeDiff and save in data frame 
4 N2 =Calculate length of dataset  
5 Data1 = Null #empty data frame to save new data 
6 Loop L1 Infocom06tbUsers  until N1 count  
7 Access and save each row and column element in to variables 
8 Loop L2 Infocom06tbTimeDiff until N2 count  
9 Access and save each row and column  
10  Check L2 column 2 user with L1 column 2 user are equal 
11  Check L2 Column 2 user with next L2 Column 2 user are equal 
12  Check L2 Column 2 user same as next L2 Column 2 user then 
13  Calculate Entropy 
14 Else Entropy set to 0  
15 Bind Data in Data1 frame 
16 Repeat all from same pairs in Infocom06tbUsers 
17 Save and write Data 1 in NewFile 

 

 
 

This is taken in to account when adding the entropy 

value, by putting a weight on each entropy. A weight is put on 

each subset, which is the size of that subset divided by the 

overall number of fi there are at this split node.   

V is a possible or particular value of A 

S is a set of fi (example) {X} 

 subset where = V ,which is all the fixed time or all the 

maximum connections or all the connection id’s 0 count. 

This is the entropy of those subsets and the weight indicates 

what proportion of the items failed in to the rather fixed time 

that is no time difference or all the maximum connections that 

is highest number of connectivity. So items failed in 

information gain calculation to fixed time is multiplied by the 

how pure was the fixed time or all the maximum connections. 

If the resulting subset is large and pure then it’s good and if 

the resulting subset is small and impure then it’s bad. If the 

result is good if it returns a large pure subset, any sized then it 

is good or if we get small or big impure subset it is bad. 

In summary, the average purity is weighted by the size of 

the set’s average purity after the split on attribute A, because 

there were some positive and some negative splits. 

Looking at, the difference in entropy before and after the 

split is the determining point at which interpret whether we are 

sure how much we are certain before split and how much more 

certain after the split. That is which node is considered as 

honest or which going to be consider as, suspicious. This is 

called information gain. 

III. EXPERTIMENTS 

A. Processing method 

The part of the research contributes to classification and 

regression models using the C4.5 algorithm for outcome 

generation. To prepare, the dataset was split based on the 

User1. There are 98 users in the first column, each connecting 

to many other users in the second column (User2). The split 

carries information in both columns. 

The splitting process: To split the dataset an automated 

function in R was used to build the data frame. The complete 

original dataset was saved in to one frame, and a new variable 

for data frame was created. 

A specific number of users was selected from column one 

of the dataset. Data with all columns related to the specific user 

number was fetched and exported to the group of data into new 

files and saved with a user number for future recognition. 

B. Binary count of columns: Total count for each node and 

connection 

After the split process in number of datasets, the total 

number of specific dataset user connections to other users was 

calculated. For example, calculating the entropy for the first 

level 1(split), requires knowledge of how many times node 1 

connected to the second column of node 3. This brings us the 

total count of node 1 and 3 connection.  

The process is as follows: fetch the split dataset for a 

specific user in one frame; create a new variable for the data 

frame; use the inbuilt count function to access User1 and User 

2 columns of the dataset; return the count of each pair of 

connections; fetch data from User1 and User2 related to the 

specific user number selected with its count; export the group 

of data into a new file, and save the pair count value for future 

recognition; with its connection frequency between User 1 and 

User 2. The same process repeated for time difference, index 

value and connection id columns by selecting specific columns 

and values. 

Entropy generation and analysis: Analysis of user vs TimeDiff 

The following formula shows entropy generation for the 

first node, based on user count and time difference, and is 

calculated with the help of User1 and User2 pair and other 

similar node total in dataset with TimeDiff and its frequency. 

then further calculate entropy for both side nodes. 

 

As specified, the entropy model has a right side and a left 

side. The left side tends toward ‘yes’ or calculation of leave 

node entropy (to 0) which helps to eliminate the complications 

in the end results and predictions. The right side tends toward 

‘no’ or leave entropy to non-zero value (an entropy value >0). 

 

Repeating this algorithm for all users and time difference 

frequency count datasets. This generates new files for the pair 

with User1, User2, Frequency 1, and EntropyTimeDiff. 

With the modification, analysis for time difference vs index 

value and analysis for index value and vs connection id is 

calculated. 

C. Information gain analysis and generation 

The process gain calculation, with the help of entropy, only 

uses an entropy calculation based on time difference, because 

there is no need to calculate gain for second and third stage of 



Algorithm 3: Calculate information gain for each node and dataset 
1 Infocom06tbUsersIG <- Read dataset – Total user frequency count 
and save in data frame 

2 I1 =Calculate length of dataset  

3 Infocom06tbTimeDiffIG <- Read dataset – user frequency count 
based on TimeDiff and save in data frame 

4 I2 =Calculate length of dataset  

5 IGaintbUser = Null #empty data frame to save new data 
6 Loop G1 Infocom06tbUsersIG until I1 count  

7 Access and save each row and column element in to variables 

8 Loop G2 Infocom06tbTimeDiffIG until I2 count  
9 Access and save each row and column  

10  Check G2 column 2 user with Last G2 column 2 user are not 

equal 
11  Check G2 column 2 user with G1 column 2 user are equal 

12  Check G2 column 2 user with next G2 column 2 user are equal 

13 Calculate Gain 
14 Bind Data in Data1 frame  

15 Repeat all from same pairs in Infocom06tbUsersIG 

16 Save and write IGaintbUser list in NewFile 

Algorithm 4: Calculate maxGain  
1 Infocom06tbUsersIG <- Read dataset – Total user frequency count 

and save in data frame 

2 M1 =Calculate length of dataset  
3 IGainMaxtbUser = Null #empty data frame to save new data 

4 maxGain is max value of Infocom06tbUsersIG Gain column 

5 Loop Gn Infocom06tbUsersIG from 1 to M1 count  
6  Access and save each row and column element in to variables 

7   Check Gn  Gain with maxGain are equal then 

8 Set other values of that row to variables 
9 Bind Data in IGainMaxtbUser frame  

10 Repeat all from same pairs in Infocom06tbUsersIG\ 

11   Save and write IGainMaxtbUser row to list in File 
 

entropy when the first stage result is 0. It happened because of 

entropy single binary value of 0. 

Hence, the information gain model for the time difference 

tables is: 

 
Where,  

S – user TimeDiff total entropy 

A – selected attribute  

Some of the returned gain values were either 0 or NA 

because it could not find second value and equation generate 0 

results. 

Based on the calculated information gain for each table and 

each node, the single maximum gain and their node number is 

calculated to help predict sybil users. 

 

D. maxGain analysis 

maxGain is the maximum calculated value of the 

information gain of a single node among other nodes. 

maxGain, in this research was calculated based on User1 users 

or split datasets that we have generated to calculate the 

information gain for each node. The max function of R was 

used capture the max value of a single dataset including its 

other row values. 

The results were saved in a new file, one by one, as the 

maxGain for each information gain dataset was calculated. 

IV. CONCLUSION 

Modelling classification and regression for sybil detection 

is a very challenging task. Existing research has only made 

partial progress toward modeling classification for sybil 

detection and prediction. This research paper has proposed 

incremental progress for how sybil activity could be tracked to 

address this challenging issue. Prediction of sybil behaviour of 

has been demonstrated by analysing the graph-based 

classification and regression techniques, using decision trees 

and described dependencies across different methods. 

 Calculated gain and maxGain helped to trace some sybil 

users in the datasets. Decision trees were generated in R using 

our designed algorithm for each node. Along with observation 

of the charts and the behaviour of the classification model for 

Users 1, 4, 8, 12, 16, 18, 19, 42 and 66 were able to predict the 

behaviour of sybil users. The results were compared to trees 

generated by WEKA’s inbuilt C4.5 algorithm to help evaluate 

and refine our algorithm. Analysis shows that the trees that 

mostly fall on the right side have negative leaves and a higher 

value of suspicious entropy compared to other leaves at the 

same level. This observation provides confidence that the 

research results are reasonably accurate, and experimentally 

prove how and why sybil attacks can be modelled for 

classification. 

V. FUTURE WORK 

Based on current predictions, some honest nodes are 

categorised as sybil attackers. Future research will continue to 

investigate and refine node identification in mobile social 

networks. 

Random forest processing and the Hadoop system could 

also be further explored. Generating a random forest using a 

scoring model via cascading, and its deployment within a 

Hadoop system are natural next steps. 

Future studies will also elaborate on the parallelised model 

building technique: using training data; grouping observations 

based on users; and generation of a behavioural model for each 

group. 

Incorporating naïve Bayes and k-nearest neighbour 

techniques would also increase the scope of this research. 
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TABLE I.  SYBIL USERS INFORMATION GAIN 

 

Fig. 2. User 1 decision tree 

Fig. 3.  User 4 decision tree 

 

 

 

 

Fig. 4. User 8 decision tree 

User1 User2 Frequency Entropy Gain maxGain 

1 41 7 0.210429 0 0.391827 

4 146 7 0.210429 0 0.391827 

8 44 9 0.201169 0 0.384668 

12 386 6 0.211632 0 0.384001 

16 211 7 0.210429 0 0.391827 

18 136 7 0.210429 0 0.391827 

19 290 7 0.210429 0 0.391827 

42 39 7 0.210429 0 0.391827 

66 63 7 0.210429 0 0.391827 


