
1

An Efficient and Privacy-Preserving Ranked Fuzzy
Keywords Search over Encrypted Cloud Data

Shugeng Ding1, Yidong Li2, Jianhui Zhang1, Liang Chen1, Zhen Wang1, Qunqun Xu2
1Shandong Luneng Software Technology, Shandong, China

2School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

Abstract—As cloud computing becomes widespread, more and
more users prefer to outsource their local sensitive data into
the cloud. In order to protect data privacy, these sensitive data
usually has to be encrypted before outsourcing, which makes
effective data utilization a very difficult task. Although traditional
searchable encryption techniques allow users to securely search
over encrypted cloud data, they only support exact single key-
word search, i.e. they do not allow any minor spelling errors or
format inconsistencies. Besides, these traditional schemes support
only Boolean search, without capturing any relevance of data files
and rarely sort the search result. Recently, fuzzy keyword search
over encrypted data techniques are introdeced to resolve the
problem of spelling errors and format inconsistencis. However,
they may incur large index size, search result inaccuracy and
high search complexity, which greatly reduce the system usability
and efficiency. In this paper, we propose the solution for privacy
preserving ranked fuzzy keyword search over encrypted cloud
data with small index. We use k-grams and Jaccard coefficient
to constrcuct fuzzy keyword set and produce fuzzy results,
and efficient relevance criteria (e.g., TF × IDF) to capture
the relevance between data files and search requests. Extensive
experiment result shows the efficiency of proposed scheme.

Index Terms—K-Gram; Fuzzy Keyword Search; Ranked Key-
word Search; Searchable Encryption; Cloud Computing

I. INTRODUCTION

Recently, with the rapid development of cloud computing
and portable device market, in order to save storage costs and
enjoy the on-demand high quality applications and services
anywhere anytime in a pay-as-you-use way, more and more
individuals and enterprises (collectively called data users)
prefer to outsource their local data into the cloud server.
However, the server is considered as “honest but curious” and
is not fully trusted by data owners. To protect data privacy,
sensitive data such as the patients’ health information or
personal health records, government documents, emails have
to be encrypted before outsourcing, which makes efficient data
utilization a very challenge task. Besides, in cloud computing,
some data owners may want to share their outsourced data
with many other data users. And the single user might intend
to only search certain data files during a given occasion.

Although traditional searchable encryption techniques [2],
[5], [8], [9] could achieve the guarantee of security and
efficiency by creating an index for each keyword and associate
the keyword with the data files which contain the keyword,
they may have some drawbacks. First, they only support exact
keyword search, i.e., they do not allow any minor spelling
errors and format inconsistencies[14], which greatly reduce
the system usability. It is quite normal that users may input

keywords that are not precisely match the pre-set keywords
due to some minor spelling mistakes or format inconsistencies.
Second, these schemes only support Boolean search, without
capturing any relevance between data files and search request,
rarely sort the search result. Users have to retrieve all of the
received files to find the ones they most interested in, which
may incur large post-processing costs, sending back all the
files that contain or not contain the keywords further brings
large unnecessary network traffic. Although the state-of-the-art
information retrieval techniques have already been utilizing a
variety of scoring mechanisms [17] to rank the relevance of
data files, but these plaintext-based schemes are not suitable
in the context of encrypted data. Besides, they are too slow to
be used on a large data collection, and they are only support
single keyword search, i.e., they are not scalable.

According to the first drawback, Li et al. [14] first solved the
problem of fuzzy keyword search over encrypted cloud data.
They proposed the “Wild-card-based Fuzzy Set Construction”,
in which each keyword needs to build a fuzzy set. An im-
proved method, “Dictionary-based Fuzzy Set Construction” is
proposed in [15], in which each keyword is corresponding with
much less fuzzy keywords. According to the second drawback,
Wang et al. [18] proposed a secure ranked keyword search
scheme over encrypted cloud data, they and Cao et al. [7]
proposed several improvements such as multi-keyword search
feature. Our early work [20] has been proposed a solution to
the ranked fuzzy keyword search over encrypted cloud data
problem. However, it only support single keyword search, and
it may meet with the problem of search result inaccuracy:
when a user inputs a keyword and the exact match fails, and
there are more than one fuzzy keyword set contain search
keyword’s fuzzy set, the system may cannot be sure which
files should be returned. All the problems mentioned above
will greatly reduce the system usability and efficiency

In this paper, we propose the solution for privacy pre-
serving ranked fuzzy keyword search over encrypted cloud
data. We use k-gram to constrcuct fuzzy keyword set and
Jaccard coefficient to quantify keyword similarity[21], to avoid
enumerating all fuzzy keywords, and thus reducing the index
space and search space, we eliminate keywords with Jaccard
coefficient smaller than our threshold value, which may greatly
reduces the index size, storage and communication costs. We
use efficient relevance criteria (e.g., TF × IDF) to capture
the relevance between data files and search requests. In this
paper, we call the criteria relevance score. For security con-
sideration, we utilize One-to-many Order Preserving Mapping

2

(OPM) algorithm to encrypt the score and Order-Preserving
Symmetric Encryption (OPSE) scheme in [3], [18]. And we
will utilize some efficient algorithms to solve the problem of
result unaccuracy which is mentioned above.

The rest of paper is organized as follows: Section 2 sum-
marizes the features of related work. Section 3 introduces
the system model, threat model, and our design goal. Section
4 formularizes existing keyword search schemes. Section 5
provides the construction and details of our proposed scheme.
Section 6 presents the security and efficiency analysis. Finally,
section 7 concludes the paper.

II. RELATED WORKS

A. Searchable encryption

Existing searchable encryption schemes [1], [2], [5], [9],
[13] generally create an encrypted searchable index for each
keyword and associate the keyword with the data files which
contain the keyword. et al. Boneh et al. [4] proposed a public
key encryption (PKE) scheme, which means that each file is
encrypted using public key by data owners but the authorized
data users can search the files using their private key, but this
scheme fails regarding access policy and dictionary attack,
and it takes too much time to calculate public key. [13]
proposed a general search scheme called predicate encryption
schemes, they proposed to support both conjunctive and non-
conjunctive query. However, none of those existing Boolean
keyword searchable encryption techniques support ranked or
fuzzy keyword search.

B. Fuzzy keyword searchable encryption

Li et al. [14] first solved the problem of fuzzy keyword
search over encrypted data. They proposed the “Wild-card-
based Fuzzy Set Construction (WFSC)”, in which each key-
word needs to build a fuzzy set, they use edit distance to quan-
tify keyword similarity. An improved method, “Dictionary-
based Fuzzy Set Construction (DFSC)” is proposed in [15], in
which each keyword is corresponding with much less fuzzy
keywords. Our early work [20] proposed a privacy preserving
ranked fuzzy keyword search scheme over encrypted cloud
data, it combines the DFSC technique and OPM algorithm to
construct a new index structure and implements both fuzzy
keyword search and ranked keyword search functionality.

C. Ranked keyword searchable encryption

Ranked keyword search captures the relevance between
data files and search request and ranks the search results.
Boldyreva et al. [3] proposed a order preserving symmetric
encryption (OPSE) scheme, it supports deterministic property
in which a random coin generator and sampling function
implimented. Wang et al. [18] introduced a more secure ranked
keyword search scheme over encrypted cloud data, it uses
Order Preserving Mapping (OPM) algorithm to encrypt the
score. Cao et al. [7] proposed several improvements such as
multi-keyword search feature.

Figure 1. Frame of keyword search over encrypted cloud data

D. Multi-keywords searchable encryption

There are many literatures tried to improve the efficiency
and security of a single keyword search scheme [9], [2].
Golle et al. [11] first proposed the conjunctive keyword search
technique, and Byun et al. [6] introduced a more efficient
conjunctive keyword search scheme. Cao et al. [7] presented
a muti-keyword search scheme over encrypted cloud data and
established various privacy requirements. Liu et al. [16] allows
the cloud server to participate in the partial decryption of the
data files.

III. PROBLEM FORMULATIONS

A. System model

We consider a cloud system consisting of three entities in
this paper: cloud server, data owner and data user, as Fig.1
illustrates.

In our system model, data owner has a collection of n files
F = (F 1,F 2,F3, ... ,Fn) and intends to outsource them to the
cloud server in encrypted form C, a predefined set of distinct
keywords W = (w1, w2, ..., wm) is extract from F . In order
to search on the encrypted data effectively, before outsourcing,
data owner will first build a secure searchable index I for each
keyword in W , then outsources all the encrypted indices IEnc
and data files C to the cloud server.

In this paper we assume the authorization between data
owner and data users has been appropriately done. An autho-
rized user can input a search request and selectively retrieve
files which he/she interests. To search the file collection for
a given search request such as Q, the authorized user first
computes a fuzzy set of K and then acquires a correspond-
ing trapdoor TQ through search control mechanisms such
as broadcast encryption [9]. Upon receiving TQ, the cloud
server is responsible for searching the index IEnc and return
corresponding set of encrypted file IDs. To improve the search
accuracy, the search result should be ranked by the cloud
server according to some ranking criteria.

The proposed ranked fuzzy keyword search scheme returns
the results according to the following rules:

1) If the user’s search request TQ exactly matches the pre-
set keyword, the cloud server returns corresponding ranked
files containing the keyword;

3

2) If exact match fails, i.e., there exists minor spelling errors
or format inconsistencies in the search request, the cloud server
will return the closet possible ranked results based on pre-
specified similarity semantics.

B. Threat Model

The cloud server is considered “honest but curious” and can
not be fully trusted by users in our model, this is consistent
with existing searchable encryption schemes[7], [14], [18],
[20], [9]. Even though data files are encrypted, the cloud server
may try to capture extra sensitive information from user’s
search request , encrypted files, and indices while performing
keyword-based search over C. So the search should be per-
formed in a secure manner that allows data files to be securely
retrieved while revealing as little information as possible to the
cloud. We will follow the security definition proposed in the
existing searchable encryption [9].

C. Design Goals

In this paper, we should achieving the following security
and performance guarantee:

i) Storage-saving ranked fuzzy keyword search, which
means that the returning results are ranked according to some
ranking criteria and the fuzzy keyword set consumes low
storage costs.

ii) Muti-keyword search, which means our proposed scheme
supports multiple keywords search.

iii) Privacy-preserving search, which means the cloud server
is prevented from capturing extra useful information from the
encrypted data files and the indices and the trapdoors;

iv) Access accuracy search, which means that when a user
inputs a keyword and the exact match fails, and there are
more than one fuzzy keyword set contain this keyword’s fuzzy
keyword set, the server is sure which data files should be
returned.

v) Efficiency, which means above-mentioned goals should
be achieved with low storage size, communication and com-
putation overhead.

D. Preliminaries

Edit distance String similarity can be measured by several
measures. In [14], [15], they use edit distance technique [12] to
implement their scheme. The edit distance ed(w1,w2) between
two words w1and w2 is the number of operations required
to transform one of them into the other. The three primitive
operations are:

1) Insertion: inserting a single character into a word;
2) Deletion: deleting one character into a word;
3) Substitution: changing one character to another in a word.
Files The file set of size n is denoted as

F = {F1, F2,..., Fn}

ID = {id1, id2, ..., idn}
Files = {< id1, F 1 >< id2, F2 >, ...,< idn, Fn >}
F i is the i-th file, idi is the unique identifier of F i.

Encrypted files Let sk be the data owner’s secret key, sk
can generate KF = {k1, k2, ..., kn} which are used to encrypt
data files .

Input: Files, sk
Key Generation: ki = f1(sk||idi), ki ∈ Kf , 1 ≤ i ≤ n
Output: C =FEnc = {Enc1(ki, Fi)}ki∈KF ,Fi∈F }
f1 can be implemented by hash functions; and Enc1 can

be implemented by block cipher such as AES.
Fuzzy keyword search Existing schemes usually use edit

distance technique to define the fuzzy keyword search: Given a
set of n encrypted data files F , a set of distinct keywords W =
(w1,w2, ... , wm) and edit distance d is pre-defined. Searching
input is (Q, d′), Q is the target keyword for searching, d′ is
the threshold of fuzzy search based on edit distance, d′ <= d.
The fuzzy keyword search returns a set of file IDs whose
corresponding data files probably contain the word Q. The
corresponding file IDs that contain Q are denoted as idwi

: if
Q = wi ∈W , then return idwi

(idwi
= idQ); otherwise, return

{idwi
},where ed(wi, Q) <= d′. Note that the above definition

is based on the assumption that d′ <= d. In fact, d can
be different for distinct keywords and the system will return
{idwi

} satisfying ed(Q,wi) ≤ min (d, d′) if exact match fails.
Ranking function In information retrieval community, we

generally use ranking function to rank files by computing
score of file relavance to a given search request. TF − IDF
rule is widely used in statistical measurements for computing
relevance score,where TF (term frequency) is simply the
number of times a given term or keyword appears in a data
file, and IDF (inverse document frequency) is achieved by
dividing the number of files in the whole collection by the
number of files containing the term. Among many TF −IDF
weighting techniques [22] analyzed, we choose the widely
used relevance score defined in [19] as following:

Score (Q,Fi)=
∑

t∈Q
1

|F i|
· (1 + lnfi,t) · ln

(
1 + n

Nt

)
(1)

Here Q denotes the searched keywords; fd,tdenotes the TF
of term (keyword) t in file F i; N t denotes the number of data
files that contain the term t; n denotes the total number of files
in the collection, and |F i| is the number of indexed terms in
file F i, functioning as the normalization factor.

IV. EFFICIENT RANKED FUZZY KEYWORDS SEARCHABLE
SYMMETRIC ENCRYPTION SCHEME

A. K-gram based fuzzy keyword set

K-gram K-gram refers to a substring which length is k.
The substring meets “highly adjacent” feature. For example,
“com”, “omp”, “mpu”, “put”, “ute”, “ter” are all 3-grams of
the word “computer”, and each substring is called 3-gram.
We can see that with regard to a string of length l , when we
divide it into k-grams, we will get l−k+1 substrings, and each
substring’s length is k. In this paper, we use “#” to denote the
beginning and the end of a word. Thus the set of 3-grams of
the word “computer” is: “#co”, “com”, “omp”, “mpu”, “put”,
“ute”, “ter”, “er#”. So with with regard to a string of length
l, when we divided it into k-grams, we will get l − k + 3
substrings, and the total size of k-grams is O(m ∗ (l− k+3))
instead of O(m ∗ ld) in DFSC approach mentioned in Section

4

4.1. In fact, there are many same k-grams in W , which may
further reduce the index size.

K-gram based dictionary In this chapter, a k-gram based
dictionary is a set of all the k-grams of distinct keywords
W = (w1,w2, ... , wm). We define a dictionary of size N as
KD ={G{wi}}, where G{wi} denotes k-grams of keyword
wi, 1 ≤ i ≤ m.

Jaccard coefficient There are many measures to quantify
string similarity. In this paper, we choose Jaccard coefficient
for our proposed scheme. The Jaccard coefficient is used to
measure the similarity between finite sets, and is defined as
the size of the intersection divided by the size of the union of
the sets, i.e.

λ = J(Aw, BK) = |Aw∩BK |
|Aw∪BK | (3)

Here, sets Awi
and BK denote the set of k-grams for

keyword wi(wiεW) and K respectively. Here we specify that
when both A and B are empty, λ = 0. If wi is equal to K,
wi will have the highest Jaccard coefficient value (λ = 1)
compared to the other keywords in the index.

K-gram based fuzzy keyword search In this paper, we
adopt Jaccard coefficient to construct our fuzzy keyword set:
Given a set of n data files F , a set of distinct keywords W =
(w1,w2, ... , wm). We generate the dictionary KD ={G{wi}}
for W , here G{wi} denote the k-grams of keyword wi(1 ≤
i ≤ m). For every gram gjεKD (1 ≤ j ≤ |KD|), we build a
k-gram based index Igj = gj , {w}, here {w} denote a set of
keywords which may contain the gram gj . Thus, the whole k-
gram based index can be expressed as I = Ij(1 ≤ j ≤ |KD|).

We assume that the search keyword is Q, and λmin is the
threshold of fuzzy search based on Jaccard coefficient (λmin
can be determined in our experiments). First we generate the
k-grams for Q, which are denoted as G{Q}. For every gram
giεG{Q}(1 ≤ j ≤ |G{Q}|), the server will match it in the k-
gram index I introduced above and return relative keywords
containong the k-gram gi. To reduce our search space, we
only want to search the keywords which is closely related
with user’s search request.

If the Jaccard coefficient λw of keyword wi is bigger than
our threshold value λmin , i.e.
λwi

= |Awi
∩BQ|/|Awi

∪BQ| ≥ λmin
we add wi to our fuzzy keyword set Ffuzzy .

B. K-gram based index

We assume that the user’s search request contains mutiple
keywords, denoted as Q = {Q1, Q2, ..., Qt}. In our scheme,
for each QiεQ, we computer its k-grams G(Qi), and then
compute the fuzzy keywords set FQi

using the method men-
tioned in Section5.1. Thus the all fuzzy keyword set of Q
is Ffuzzy = {FQi

}. And then cloud server can retrieve the
inverted index to obtain corresponding data files and return
them to users.

An example of k-gram based index is shown in Table 1.
According to the keyword wi (such as computer), the

posting list of wi includes three enties: keyword, file ID and
score, which is consistent with [18]. An example of the posting
list is shown in Table 2.

k-gram com
keyword computer complete complicated ... come

Table I
AN EXAMPLE OF K-GRAM BASED INDEX (k = 3)

keyword wi

file ID idi1 idi2 idi3 ... idit−1 idit
score 2.34 1.46 14.36 ... 4.77 5.45

Table II
AN EXAMPLE POSTING LIST OF PROPOSED K-GRAM BASED INDEX

Keyword denotes the whole keywords the in the k-gram
based index. File ID denotes the file identifier containing the
corresponding keyword.

C. The efficient ranked fuzzy keywords search scheme

Based on the storage saved fuzzy sets mentioned above and
the secure OPM ranking funchtion in [18], our proposed
ranked fuzzy keywords search scheme can be described as
follows.

Initialization:
The data owner then scan F and extract distinct words W =

(w1, w2, ..., wm) from F , for each wiεW , buid F (wi), F (wi)
is the set of file IDs which contains the word wi;

In the Setup phase:
1) The data owner uses his/her secret key sk to generate

KKD = {k1, k2, ..., k|KD|} which are used to encrypt k-
grams in dictionary KD, ki = f1(sk||gi), ki ∈ KKD, giεKD.
The data owner also calls KeyGen

(
1a, 1b, 1b

′
, 1c, |D|, |R|

)
to generate random keys x, y, z← {0, 1} a, and outputs K ={
x, y, z, 1b, 1b

′
, 1c, |D|, |R|

}
2) The server then uses the index structure in Table 1 and

Table 2 to build a k-gram index. The details are shown in
Fig.4.

3) The data owner outsources the encrypted index table and
encrypted data files C to the cloud server.

In the Retrieval phase:
1) The authorized user inputs his/her search request Q.

He/She first computes the fuzzy keyword set Qfuzzy that
satisfies with λwi = |Awi ∩ BQ|/|Awi ∪ BQ| ≥ λmin, then
computes the trapdoors {(πx(Qi), fy(Qi))}QiεQ and sends it
to the cloud server.

2) Upon receiving the search request
{(πx(Qi), fy(Qi))}QiεQ, the cloud server compares them
with the index table. He/She uses πx(Qi) to locate the
matching list of the index, and uses fy(Qi) to decrypt
the entries, and then he/she knows the file identifiers
< id(Fij) > and their associated encrypted relevance scores
OPMfz(w)(Sij). The server fetches the files and sends
back them in a ranked sequence according to the encrypted
relevance scores OPMfz(w)(Sij).

3) The user decrypts the returned results and retrieves their
interested files.

V. PERFORMANCE ANALYSIS

We conducted a thorough experiment of our proposed
scheme which is implemented by Java language. In our

5

Figure 2. The details of Index(·) for proposed scheme

Figure 3. Relationship between Jaccard coefficient value and fuzzy set size

experiment, we select 10714 real data files from the website
[10].

According to our k-gram based scheme, the threshold λmin
based on Jaccard coefficient controls the size of fuzzy keyword
set. It indicates the lowest similarity between the search
requests and the fuzzy keywords we generated. To find the best
value of λmin , we scan all the words in our downloaded files
and use different Jaccard coefficient values from 0 to 0.5 to
build fuzzy sets. As Fig.5 illustrates, when Jaccard coefficient
value is greater than 0.21, the size of fuzzy set is almost 0, the
fuzzy keyword search results will not be obvious. For example,
when Jaccard coefficient value is 0.3, the fuzzy set of word
“fuzzy” only contain the word “fuzzy”. However, when the
coefficient value is less than 0.15, the fuzzy set size will be
greater than 20, it will waste storage and computation space,
and some words in the set may have nothing to do with user’s
search request. According to Fig.5, that when the coefficient
value is 0.18, when can get a reasonable fuzzy keyword size,
which is consistent with [21].

1) Index construction: According to the complexity analysis

Figure 4. The comparison of fuzzy keyword number between KFSC and
DFSC

Figure 5. The comparison of index size between KFSC and DFSC

in Section 5.1, we know that with regard to a string of length
l, when we divided it into k-grams, we will get l − k + 3
substrings, and the total size of k-grams is O(m ∗ (l− k+3))
instead of O(m ∗ ld) in DFSC approach mentioned in Section
4.1. In fact, there are many same k-grams in W , which may
further reduce the index size.

To allow efficient secure ranked fuzzy keyword search
over encrypted cloud data, we adopt the k-gram based in-
dex illustrated in Table 1 and Table 2, when k is the
same, the index size of our proposed scheme is smaller
than DFSC scheme in [15]. We randomly select 10 words
of length 5, 6, 7, 8, 9, 10, 11, 12 respectively to consturct the
fuzzy set, Fig.6 shows that the fuzzy keyword number of
our k-gram based fuzzy set construction (KFSC) is relatively
small. We randomly select different number of files and
observe the sizes of indices when the keywords number
are1000, 2000, 4000, 6000 , respectively. We can see that our
proposed index size is smaller than our early RFKS scheme
in [20]. Here we assign d = 2, k = 3, λmin = 0.18

2) Search: The search time includes trapdoor buiding time,
posting list fetching time in the index, decrypting time for
each entry. We can also consider the top-k retrieval. The
cloud server can get the top-k retrieval as fast as the plain
text search because of the order-preserved encrypted scores
and our small index size. And we can also make some
minor spelling errors and format inconsistencies when we
input our search keywords, which may obviously improve the
system usability and efficiency. Besides, the problem of result
inaccuracy mentioned in Section 1 will not appear in this paper
because of the k-gram based fuzzy set.

Besides, as [18] proved, the One-to-many Order-Preserving
Mapping scheme is safe, so we can ensure that out proposed

6

scheme is also secure because our ranking scheme is consistent
with [18]. We will no longer prove it in this paper.

VI. CONCLUSIONS

In this paper, we introduced a complete framework of
an efficient and privacy preserving ranked fuzzy keyword
search over encrypted cloud data. For the efficiency and
security consideration, we adopted the k-gram and Jaccard
coefficient to accomplish fuzzy keyword search and One-to-
many Order-Preserving Mapping scheme to build the inverted
index. Through thorough performance and security analysis,
we showed that our proposed scheme is privacy preserving
and efficient.

As our future work, we will study the problem of improving
the efficiency of index building and searching. And we will
also explore privacy preserving schemes under stronger threat
models.

ACKNOWLEDGEMENT

This work is supported by National Science Foundation
of China Grant #61672088 and #61300175, Fundamental
Research Funds for the Central Universities #2016JBM022.
The corresponding author is Yidong Li.

REFERENCES

[1] Feng Bao, Robert Deng, Xuhua Ding, and Yanjiang Yang. Private
query on encrypted data in multi-user settings. In Information Security
Practice and Experience, volume 4991, pages 71–85. Springer Berlin /
Heidelberg, 2008.

[2] Mihir Bellare, Alexandra Boldyreva, and Adam O¡¯Neill. Deterministic
and efficiently searchable encryption. In Advances in Cryptology -
CRYPTO 2007, volume 4622, pages 535–552. Springer Berlin / Hei-
delberg, 2007.

[3] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam
O¡¯Neill. Order-preserving symmetric encryption. In Advances in Cryp-
tology - EUROCRYPT 2009, volume 5479, pages 224–241. Springer
Berlin / Heidelberg, 2009.

[4] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe
Persiano. Public key encryption with keyword search. In Advances
in Cryptology - EUROCRYPT 2004, volume 3027, pages 506–522.
Springer Berlin / Heidelberg, 2004.

[5] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries
on encrypted data. In Theory of Cryptography, volume 4392, pages
535–554. Springer Berlin / Heidelberg, 2007.

[6] Jin Wook Byun, Dong Hoon Lee, and Jongin Lim. Efficient conjunctive
keyword search on encrypted data storage system. In Public Key
Infrastructure, pages 184–196. Springer, 2006.

[7] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-
preserving multi-keyword ranked search over encrypted cloud data. In
INFOCOM, 2011 Proceedings IEEE, pages 829 –837, april 2011.

[8] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving
keyword searches on remote encrypted data. In Applied Cryptography
and Network Security, volume 3531, pages 391–421. Springer Berlin /
Heidelberg, 2005.

[9] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable symmetric encryption: improved definitions and efficient
constructions. In Proceedings of the 13th ACM conference on Computer
and communications security, CCS ’06, pages 79–88, 2006.

[10] Request For Comments Database. http://www.ietf.org/rfc.html.
[11] Philippe Golle, Jessica Staddon, and Brent Waters. Secure conjunctive

keyword search over encrypted data. In Applied Cryptography and
Network Security, pages 31–45. Springer, 2004.

[12] V. Levenshtein. Binary codes capable of correcting spurious insertions
and deletions of ones. Problems of Information Transmission, 1:8–17,
1965.

[13] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,
and Brent Waters. Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption. In Advances in
Cryptology šC EUROCRYPT 2010, volume 6110, pages 62–91. Springer
Berlin / Heidelberg, 2010.

[14] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou.
Fuzzy keyword search over encrypted data in cloud computing. In
INFOCOM, 2010 Proceedings IEEE, pages 1–5, march 2010.

[15] Chang Liu, Liehuang Zhu, Longyijia Li, and Yuran Tan. Fuzzy keyword
search on encrypted cloud storage data with small index. In Cloud
Computing and Intelligence Systems (CCIS), 2011 IEEE International
Conference on, pages 269 –273, sept. 2011.

[16] Qin Liu, Guojun Wang, and Jie Wu. An efficient privacy preserving
keyword search scheme in cloud computing. In Computational Science
and Engineering, 2009. CSE’09. International Conference on, volume 2,
pages 715–720. IEEE, 2009.

[17] Amit Singhal. Modern information retrieval: a brief overview. BUL-
LETIN OF THE IEEE COMPUTER SOCIETY TECHNICAL COMMIT-
TEE ON DATA ENGINEERING, 24:2001, 2001.

[18] Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. Secure ranked
keyword search over encrypted cloud data. In Distributed Computing
Systems (ICDCS), 2010 IEEE 30th International Conference on, pages
253 –262, june 2010.

[19] I. H. Witten, A. Moffat, and T.C.Bell. Managing Gigabytes: Compress-
ing and Indexing Documents and Images. John Wiley & Sons, Inc.,
1999.

[20] Qunqun Xu, Hong Shen, Yingpeng Sang, and Hui Tian. Privacy-
preserving ranked fuzzy keyword search over encrypted cloud data.
december 2013.

[21] Wei Zhou, Lixi Liu, He Jing, Chi Zhang, Shaowen Yao, and Shipu Wang.
K-gram based fuzzy keyword search over encrypted cloud computing.
Journal of Software Engineering & Applications, 6(1), 2013.

[22] Justin Zobel and Alistair Moffat. Exploring the similarity space. In
ACM SIGIR Forum, volume 32, pages 18–34. ACM, 1998.

