
Classifying Sybil in MSNs using C4.5

Anand Chinchore

Advanced Analytics Institute

University of Technology Sydney

Sydney, Australia

Anand.Chinchore@uts.edu.au

Guandong Xu

Advanced Analytics Institute

University of Technology Sydney

Sydney, Australia

Guandong.Xu@uts.edu.au

Frank Jiang

Advanced Analytics Institute

University of Technology Sydney

Sydney, Australia

Frank.Jiang@uts.edu.au

Abstract – Sybil detection is an important task in cyber

security research. Over past years, many data mining algorithms

have been adopted to fulfill such task. Using classification and

regression for sybil detection is a very challenging task. Despite

of existing research made toward modeling classification for sybil

detection and prediction, this research has proposed new solution

on how sybil activity could be tracked to address this challenging

issue. Prediction of sybil behaviour has been demonstrated by

analysing the graph-based classification and regression

techniques, using decision trees and described dependencies

across different methods. Calculated gain and maxGain helped to

trace some sybil users in the datasets.

Keywords—Classification and regression, C4.5; sybil detection,

mobile social network, entropy model, decision tree, random forest,

behaviour analytics.

I. INTRODUCTION

A huge amount of data is being collected and stored in

databases across the world and its space stations, and this trend

continues to increase year upon year. So much valuable

knowledge is hidden in these database, it is practically

impossible to mine them without an automatic extraction

method. Over past years, many algorithms, called nuggets,

have been created to extract this knowledge using various

methodologies such as classification, association rules,

clustering, and many more.

Sybil detection is an important topic in cyber security

research. The evolution of sybil defense protocols have

leveraged the structural properties of the social graph, with an

underlying distributed system, to identify sybil identities.

Researcher team first clarified the deep connection between

sybil defense and the theory of random walks which led to a

community detection algorithm that, for the first time, offered

provable guarantees in the context of sybil defense [2].

Proposed research the sybil guard approach explains, sybil

guard, is a new protocol for defending against sybil attacks

without relying on a trusted central authority [4]. Sybil guard

exploits this property to bind the number of identities a

malicious user can create. The researchers proved the

effectiveness of sybil guard both analytically and

experimentally [5]. Network of friends contain the honest

devices, and its networks of foes contain the suspicious

devices. With the help of these two networks, the device is then

able to determine whether an unknown individual is carrying

out a sybil attack or not [6]. Mining (Social) Network Graphs

to Detect Random Link Attacks research mine the social

networking graph extracted from user interactions in the

communication network to find RLAs and formally define

RLA and show that the problem of finding an RLA is (theory)

NP-complete [7]. Discussing defending sybil attacks in specific

types of MSNs based on the past focus researchers. Research

proposed a security mechanism to detect and eliminate sybil

nodes [8]. Researched on sybil attacks and their defense in the

IoT proposed survey sybil attack and defense system in IoT.

Their research explained about the types of sybil attacks

considering sybil attacker’s capabilities. Also, the research

presented some sybil defense schemes, with a social graph

based sybil detection, behaviour classification based sybil

detection and mobile sybil detection with the comprehensive

comparisons [9]. Sybil attackers frequently change their

pseudonyms to cheat other users. Researcher investigated the

contact statistics of the used pseudonyms and detected sybil

attackers by comparing the contact statistics of pseudonyms

from normal users and that from sybil attackers [10].

II. CLASSIFICATION MODELS FOR SYBIL DETECTION

Classification consists of predicting a certain outcome,

based on a given set of inputs. Typically, an algorithm

processes a training set, containing a set of attributes and the

respective outcome, to discover the relationships between the

attributes that make the outcome possible. The algorithm is

then given an unseen dataset, called the prediction set, which

contains a similar set of attributes without the outcome. The

algorithm then analyses the input and attempts to produce a

prediction.

Classification models help to predict categorical class

labels, which may be discrete or nominal. Constructed models

classify data based on a training set and use the resulting class

labels values as attributes with which to classify new data.

Decision trees are a very popular method of classification

for supervised learning with nominal classes that have

dependent labels. Using decision trees to predict nominal class

behaviour given a simple ‘yes’ or ‘no’ is straightforward.

However in some cases, nominal classes can specify more than

two options, and hence which kind of entities responded to

which options can be classified and/or predicted.

The first step in the development of this classification

model was to evaluate the dataset using a decision tree.

A decision tree was built by first searching for users

identified as suspicious. These users were split into the mostly

evenly divided groups, given a set of observations and their

features. Currently mixed up column 1 or User 1 and column 2

or User 2 connections with other respective columns of starting

time, ending time including, etc.

This decision tree helped to classify the model according to

previous observations, but dividing the nodes into group

presented new questions:

1. Does this user connect to specific user regularly or do

they connect randomly to anyone?

2. Is there a chance that this user might connect to each

and every available node?

3. If they connect regularly, do they reconnect with

friends or to other random nodes?

The decision trees generated by C4.5 can be used for

classification and regression. The C4.5 algorithm is developed

by Ross Quinlan, which use to generate decision trees. It is an

extension of Quinlan's earlier ID3 algorithm. C4.5 often

referred to as a statistical classifier.

At each node of the tree, C4.5 chooses the data attribute that

most effectively splits its set of samples into subsets enriched

in one class or the other. The splitting criterion is the

normalized information gain (ie Kullback–Leibler divergence)

and the difference in entropy (ie information theory). The

attribute with the highest normalised information gain is

chosen to make the decision. The C4.5 algorithm then recurs

on the smaller sub-lists.

A. The C4.5 Algorithm

This algorithm has a few base cases. All the samples in the

list belong to the same class. When this happens, it simply

creates a leaf node for the decision tree saying to choose that

class. None of the features provide any information gain. In

this case, C4.5 creates a decision node higher up the tree using

the expected value of the class. Instance of previously-unseen

class encountered. Again, C4.5 creates a decision node higher

up the tree using the expected value.

•The algorithm operates over a

set of training instances, C.

•If all instances in C are in class

P, create a node P and stop,

otherwise select a feature or

attribute F and create a decision

node.

•Partition the training instances

in C into subsets according to the values of V.

•Apply the algorithm recursively to each of the subsets C.

Fig. 1. Decision tree process

The research explain why this approach works, and why it

is better for finding sybil users and their behaviour.

Further research idea helps to effectively view the data from

many angles. It also eliminates insignificant features and nodes

to improve prediction, help build a robust model, and more

easily draw parallels with other datasets. However, the current

research scope does not consider several crucial details. Each

connection set requires an individual model, and observations

from honest users and their connection times are irrelevant, so

should be discarded. Building model of many nodes at once

presents some challenges. We are going to parallelised model

building by group it by first column single node in future

research.

B. Decision trees, entropy and gain

In this section, decision trees are used to split data in to

different forms and a number of trees are built based on

information available in the dataset.

Decision trees work very differently than naïve Bayes.

When predicting a sybil user using a decision tree, all the nodes

and their possible connections need to be observed. For

example, the Infocom06 dataset records 98 users, connecting to

over 4000 users multiple times, which generates more than

200,000 connections. The set also includes the length of time

the nodes were connected and its index values.

To predict whether or not a user is sybil, each user and their

connected node are grouped. This procedure is repeated for

each node in User1 column. The Manual intervention is

required to determine how many other attempts to predict how

many other nodes the selected node is connected to. Other

factors for consideration include: whether the selected node is

connected to a limited or large number of other nodes; whether

those nodes have further connections that are limited or large;

and whether the selected node is connected to other nodes for a

specific or non-specific time.

Trees were selected for further random forest processing,

based on these determinations. The key to generating a

decision tree for each node is to glean what type of connections

the node has made and why it made those connections.

Examining each one of these attributes, such as User1 column

and User2 column node, start and end time of connection,

index values, etc. and try to meet the best interest possible

Algorithm 1 - C4.5:
1 Split (node, (number of branch (fi)))
2 A <- the best attributes for splitting the fi
3 Decision attributes for this node <- A
4 For each value of A, create new child node
5 Split training fi to child nodes
6 Do each child node / subset
7 If subset is Pure: STOP
8 Else

9 Split (child_node, (subset of fi)
10 Consider node: Considerably suspicious / honest
11 Repeat
12 If subset is Pure: STOP
13 Consider node: Honest
14 Consider node: Suspicious
15 Repeat
16 If subset is Pure: STOP
17 Else
18 Consider node: Sybil and user for RF (Random forest)

about assuming its connection, whether the selected node is

suspicious and what other factors may influence the

consideration of a node as sybil.

Generally speaking, attributes in the available data are

examined and then used to split the data into subsets. For

example, the number of connections a given node has made

could be: specific (ie regular/honest); limited (ie only few

connections); or large (ie connect to most of available or more

than selected average). Additionally, those three subsets will

contain further subsets of information.

If subset is pure then it is honest. That means if the node

had specific connections, and connected over an unspecified

time, the process will stop. Otherwise it will continue to

investigate the behaviour and try to further split the data – a

sort of variation on a divide and conquer algorithm.

The new datasets were tested for predictions next, to see

which examples fell into which subsets. The dominant class is

then used for that subset. For example, if the selected node

always connects to the average number of nodes for an

unspecified time, then is it certain that the selected node is

honest and the branch is split at higher level displaying

remaining values.

If the selected node is categorised as suspicious or

considerably suspicious, the node is divided into even more

branches based on the start and end time of its connections.

These branches of the decision tree: have a lower connected

node count; and/or, are less than or equal to the time difference.

The tree will split further again if both values are true,

otherwise the node will be deemed honest.

The algorithm stops when two pure subsets are found,

because there is no need for further division after another

subset is deemed pure, and there is no need to further

investigate sybil activity. The next node is selected and the tree

building process is restarted. The node is considered to be

honest if there is a high probability of a low connection count,

and the node has connected with other nodes for an undefined

specific time. If a node in the second branch of the tree is not

pure, the algorithm checks for index value and will repeat the

procedure. If the second branch is also not found to be pure,

then based on column six of Infocom06 (connection id) value

of 0’s count (>= avg 0’s count), it will further branch the tree

and the node will certainly be considered sybil.

Finding the split:

Number of branches fi – each feature in dataset

Let fi be the feature with the greatest gain

Create a decision node that splits on fi

For each split Spl on fi, FindSplit(Spl)

Selecting the best attribute: Nodes can be connected based

on: time of connection; index value; or connection id’s 0’s

count. There are pros and cons associated with each attribute.

The purity of splits have to be measured, so the ideal choice is

the attribute with all pure subsets to help reduce the dataset and

eliminate data for further examination.

Some cases have a 50% chance of being pure or impure. So

split the generated subset in pure side is good and not to split

the generated subset likewise have complete impurity. A

matrix that can measure both the purity of the subset and its

uncertainty is required. The uncertainty value is a measure of

probability that, after the data of a particular subset is split, a

random item within that subset is positive or negative. A

completely uncertain number, with a 50/50 chance of being

positive or negative, demonstrates that the node is honest or

suspicious.

We cannot use a posterior probability ‒ the probability that

an observation will fall into a group before the data is collected

‒ because the subset needs to be symmetrical. It means, a pure

subset or honest node has low regular connection with

uncertain frequency of time connections which is good

similarly pure subset or honest node have high connection with

uncertain frequency of time connections. So it can’t be a

probability of positive. It must be some that is symmetric of

positive side and negative side.

C. Entropy

Calculating entropy is a way to measure the uncertainty of

a class in a subset of fi. Entropy is defined as:

H(S) = -p(+) log2 p(+) – p(-) log2 p(-) bits

- S is subset of training example

- p(+) / p(-) … % of positive / negative examples in S

Entropy calculations are based on binary values of yes and no,

or 1’s and 0’s and. The original dataset did not have any text

values.

Hence, if the impure subset = 1 bit:

H(S) = - (number of purity / total number) log2 (number of

purity / total number) - (number of impurity / total number)

log2 (number of impurity / total number) = 1 bit

If the subset is pure it = 0 bits:

H(S) = - (number of purity / total number) log2 (number of

purity / total number) - (number of impurity / total number)

log2 (number of impurity / total number) = 0 bits

Entropy tells us how pure and impure is one set and

subset.

Now the information must be segregated from several

different subsets, because the attribute selected for the split

has different values. A not-so-simple average is used. The aim

is to have as many items considered to be honest as possible in

pure subset, and a drop in entropy after the split is expected:

Algorithm 2: Entropy generation per user - TimeDiff datasets:

1 Infocom06tbUsers <- Read dataset – Total user frequency count and
save in data frame
2 N1 =Calculate length of dataset
3 Infocom06tbTimeDiff <- Read dataset – user frequency count based
on TimeDiff and save in data frame
4 N2 =Calculate length of dataset
5 Data1 = Null #empty data frame to save new data
6 Loop L1 Infocom06tbUsers until N1 count
7 Access and save each row and column element in to variables
8 Loop L2 Infocom06tbTimeDiff until N2 count
9 Access and save each row and column
10 Check L2 column 2 user with L1 column 2 user are equal
11 Check L2 Column 2 user with next L2 Column 2 user are equal
12 Check L2 Column 2 user same as next L2 Column 2 user then
13 Calculate Entropy
14 Else Entropy set to 0
15 Bind Data in Data1 frame
16 Repeat all from same pairs in Infocom06tbUsers
17 Save and write Data 1 in NewFile

This is taken in to account when adding the entropy

value, by putting a weight on each entropy. A weight is put on

each subset, which is the size of that subset divided by the

overall number of fi there are at this split node.

V is a possible or particular value of A

S is a set of fi (example) {X}

 subset where = V ,which is all the fixed time or all the

maximum connections or all the connection id’s 0 count.

This is the entropy of those subsets and the weight indicates

what proportion of the items failed in to the rather fixed time

that is no time difference or all the maximum connections that

is highest number of connectivity. So items failed in

information gain calculation to fixed time is multiplied by the

how pure was the fixed time or all the maximum connections.

If the resulting subset is large and pure then it’s good and if

the resulting subset is small and impure then it’s bad. If the

result is good if it returns a large pure subset, any sized then it

is good or if we get small or big impure subset it is bad.

In summary, the average purity is weighted by the size of

the set’s average purity after the split on attribute A, because

there were some positive and some negative splits.

Looking at, the difference in entropy before and after the

split is the determining point at which interpret whether we are

sure how much we are certain before split and how much more

certain after the split. That is which node is considered as

honest or which going to be consider as, suspicious. This is

called information gain.

III. EXPERTIMENTS

A. Processing method

The part of the research contributes to classification and

regression models using the C4.5 algorithm for outcome

generation. To prepare, the dataset was split based on the

User1. There are 98 users in the first column, each connecting

to many other users in the second column (User2). The split

carries information in both columns.

The splitting process: To split the dataset an automated

function in R was used to build the data frame. The complete

original dataset was saved in to one frame, and a new variable

for data frame was created.

A specific number of users was selected from column one

of the dataset. Data with all columns related to the specific user

number was fetched and exported to the group of data into new

files and saved with a user number for future recognition.

B. Binary count of columns: Total count for each node and

connection

After the split process in number of datasets, the total

number of specific dataset user connections to other users was

calculated. For example, calculating the entropy for the first

level 1(split), requires knowledge of how many times node 1

connected to the second column of node 3. This brings us the

total count of node 1 and 3 connection.

The process is as follows: fetch the split dataset for a

specific user in one frame; create a new variable for the data

frame; use the inbuilt count function to access User1 and User

2 columns of the dataset; return the count of each pair of

connections; fetch data from User1 and User2 related to the

specific user number selected with its count; export the group

of data into a new file, and save the pair count value for future

recognition; with its connection frequency between User 1 and

User 2. The same process repeated for time difference, index

value and connection id columns by selecting specific columns

and values.

Entropy generation and analysis: Analysis of user vs TimeDiff

The following formula shows entropy generation for the

first node, based on user count and time difference, and is

calculated with the help of User1 and User2 pair and other

similar node total in dataset with TimeDiff and its frequency.

then further calculate entropy for both side nodes.

As specified, the entropy model has a right side and a left

side. The left side tends toward ‘yes’ or calculation of leave

node entropy (to 0) which helps to eliminate the complications

in the end results and predictions. The right side tends toward

‘no’ or leave entropy to non-zero value (an entropy value >0).

Repeating this algorithm for all users and time difference

frequency count datasets. This generates new files for the pair

with User1, User2, Frequency 1, and EntropyTimeDiff.

With the modification, analysis for time difference vs index

value and analysis for index value and vs connection id is

calculated.

C. Information gain analysis and generation

The process gain calculation, with the help of entropy, only

uses an entropy calculation based on time difference, because

there is no need to calculate gain for second and third stage of

Algorithm 3: Calculate information gain for each node and dataset
1 Infocom06tbUsersIG <- Read dataset – Total user frequency count
and save in data frame

2 I1 =Calculate length of dataset

3 Infocom06tbTimeDiffIG <- Read dataset – user frequency count
based on TimeDiff and save in data frame

4 I2 =Calculate length of dataset

5 IGaintbUser = Null #empty data frame to save new data
6 Loop G1 Infocom06tbUsersIG until I1 count

7 Access and save each row and column element in to variables

8 Loop G2 Infocom06tbTimeDiffIG until I2 count
9 Access and save each row and column

10 Check G2 column 2 user with Last G2 column 2 user are not

equal
11 Check G2 column 2 user with G1 column 2 user are equal

12 Check G2 column 2 user with next G2 column 2 user are equal

13 Calculate Gain
14 Bind Data in Data1 frame

15 Repeat all from same pairs in Infocom06tbUsersIG

16 Save and write IGaintbUser list in NewFile

Algorithm 4: Calculate maxGain
1 Infocom06tbUsersIG <- Read dataset – Total user frequency count

and save in data frame

2 M1 =Calculate length of dataset
3 IGainMaxtbUser = Null #empty data frame to save new data

4 maxGain is max value of Infocom06tbUsersIG Gain column

5 Loop Gn Infocom06tbUsersIG from 1 to M1 count
6 Access and save each row and column element in to variables

7 Check Gn Gain with maxGain are equal then

8 Set other values of that row to variables
9 Bind Data in IGainMaxtbUser frame

10 Repeat all from same pairs in Infocom06tbUsersIG\

11 Save and write IGainMaxtbUser row to list in File

entropy when the first stage result is 0. It happened because of

entropy single binary value of 0.

Hence, the information gain model for the time difference

tables is:

Where,

S – user TimeDiff total entropy

A – selected attribute

Some of the returned gain values were either 0 or NA

because it could not find second value and equation generate 0

results.

Based on the calculated information gain for each table and

each node, the single maximum gain and their node number is

calculated to help predict sybil users.

D. maxGain analysis

maxGain is the maximum calculated value of the

information gain of a single node among other nodes.

maxGain, in this research was calculated based on User1 users

or split datasets that we have generated to calculate the

information gain for each node. The max function of R was

used capture the max value of a single dataset including its

other row values.

The results were saved in a new file, one by one, as the

maxGain for each information gain dataset was calculated.

IV. CONCLUSION

Modelling classification and regression for sybil detection

is a very challenging task. Existing research has only made

partial progress toward modeling classification for sybil

detection and prediction. This research paper has proposed

incremental progress for how sybil activity could be tracked to

address this challenging issue. Prediction of sybil behaviour of

has been demonstrated by analysing the graph-based

classification and regression techniques, using decision trees

and described dependencies across different methods.

 Calculated gain and maxGain helped to trace some sybil

users in the datasets. Decision trees were generated in R using

our designed algorithm for each node. Along with observation

of the charts and the behaviour of the classification model for

Users 1, 4, 8, 12, 16, 18, 19, 42 and 66 were able to predict the

behaviour of sybil users. The results were compared to trees

generated by WEKA’s inbuilt C4.5 algorithm to help evaluate

and refine our algorithm. Analysis shows that the trees that

mostly fall on the right side have negative leaves and a higher

value of suspicious entropy compared to other leaves at the

same level. This observation provides confidence that the

research results are reasonably accurate, and experimentally

prove how and why sybil attacks can be modelled for

classification.

V. FUTURE WORK

Based on current predictions, some honest nodes are

categorised as sybil attackers. Future research will continue to

investigate and refine node identification in mobile social

networks.

Random forest processing and the Hadoop system could

also be further explored. Generating a random forest using a

scoring model via cascading, and its deployment within a

Hadoop system are natural next steps.

Future studies will also elaborate on the parallelised model

building technique: using training data; grouping observations

based on users; and generation of a behavioural model for each

group.

Incorporating naïve Bayes and k-nearest neighbour

techniques would also increase the scope of this research.

REFERENCES

[1] Abaya, S. A., Gerardo, B. D., “An education data mining tool for
marketing based on C4.5 classification technique”, e-Learning and e-
Technologies in Education (ICEEE), Second International Conference,
pp. 289-293, 2013

[2] Alvisi, L., Clement, A., Epasto, A., Lattanzi, S., Panconesi, A., “SoK:
The Evolution of Sybil Defense via Social Networks : Security and
Privacy (SP)” , 2013: In: IEEE Symposium on security and privacy, pp.
382 -396, 2013

[3] Behera, G., “Privacy preserving C4.5 using Gini index”, Emerging
Trends and Applications in Computer Science (NCETACS), 2nd
National Conference, pp. 1-4, 2011

[4] Haifeng, Yu, Gibbons, P. B., Kaminsky, M., Feng, X., “Sybil limit: A
Near-Optimal Social Network Defense Against Sybil Attack”’,
Networking, IEEE/ACM Transactions, vol- 18(3), pp. 885-898,2010

[5] Haifeng, Yu, Kaminsky, M., Gibbons, P. B., Flaxman, A. D., “Sybil
guard: Defending Against Sybil Attacks via Social Networks”,
Networking, IEEE/ACM, vol -16(3), pp.576-589, 2008

[6] Quercia, D. and Hailes S., “Sybil Attacks Against Mobile Users: Friends
and Foes to the Rescue”, INFOCOM, Proceedings IEEE, 2010

[7] Shrivastava, N., Majumder, A., Rastogi, R., “Mining (Social) Network
Graphs to Detect Random Link Attacks”, Data Engineering, ICDE,
IEEE 24th International Conference, pp. 486-495c, 2008

[8] Yan, S., Lihua, Y., Wenmao, L., “Defending sybil attacks in mobile
social networks”, Computer Communications Workshops (INFOCOM
WKSHPS), IEEE Conference, 163-164, 2014

[9] Zhang, K., Liang, X. Lu, R., Shen, X., “Sybil Attacks and Their
Defenses in the Internet of Things”, Internet of Things Journal, IEEE,
vol.- 1(5), pp. 372-383, 2014

[10] Zhang, K. Liang, X. Lu, R. Yang, K., Shen, X., “Exploiting mobile
social behaviors for Sybil detection”, IEEE Conference on Computer
Communications (INFOCOM), Kowloon, pp. 271-279, 2015

TABLE I. SYBIL USERS INFORMATION GAIN

Fig. 2. User 1 decision tree

Fig. 3. User 4 decision tree

Fig. 4. User 8 decision tree

User1 User2 Frequency Entropy Gain maxGain

1 41 7 0.210429 0 0.391827

4 146 7 0.210429 0 0.391827

8 44 9 0.201169 0 0.384668

12 386 6 0.211632 0 0.384001

16 211 7 0.210429 0 0.391827

18 136 7 0.210429 0 0.391827

19 290 7 0.210429 0 0.391827

42 39 7 0.210429 0 0.391827

66 63 7 0.210429 0 0.391827

