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Abstract—Community detection is one of the most important 

ways that reflect the structure and mechanism beneath the social 

network. The overlapping communities are more in line with the 

reality of social network. In the society, the phenomenon of some 

members shared membership of different communities reflects as 

overlapping communities in the network. Facing big data network, 

it is a challenging and computationally complex problem to detect 

overlapping communities. In this paper, we proposed highly 

scalable variants of a community detection algorithm with 

parallelized called Label Propagation with nodes Confidence 

(PLPAC). We introduced MapReduce to parallelize the algorithm to 

process the big data and guarantee the efficient of community 

detection. We implemented the algorithm on real network and 

artificial network to evaluate the accuracy and speedup of the 

proposed algorithm. Experiments results on many test datasets 

illustrated that the improved label propagation method outperforms 

some existing methods in terms of accuracy and time efficiency. 

Keywords—community detection; label propagation; parallel 

computation 

I.  INTRODUCTION 

Social network has become an indispensable part of present 
society. Community represents significant property of real 
word social network as it reflects the relationship between the 
users. Analyzing network structure and detecting community of 
people also play an important part in research on social 
network. Detecting network community structure is of very 
important theoretical significance and practical value for 
analyzing network topology structure, network function and 
predicting network behavior, and has been widely used in 
terrorist organizations, organizational structure management 
and some other fields. 

Many community detection algorithms have been proposed 
in the literatures to identity complex community structures in 
social network, such as the Girvan Newman algorithm [1], 
some other algorithms based on label propagation algorithm 
[2] and optimization algorithm. After improvement and 
optimization, these algorithms further reduce time complexity 
degrees. However, facing big scale social network, the 
calculation time is still too large to detect community 
efficiently. The data volume produced by social network is 
growing with an enormous rate, such as the Microblogging 
[3]. Therefore, the existing traditional community mining 
algorithms have great limitations including low computing 
power, high computational time, and the bad division result of 
the community with high quality. 

Community detection is similar to traditional clustering or 
graph partitioning problems. Thus, several effective clustering 
or graph partitioning algorithms have been applied in 
community detection. The Kernighan–Lin algorithm aims to 
minimize the difference between intra-edges and inter-edges to 
detect communities [5]. However, these early algorithms 
cannot detect large network efficiently because of their high 
time complexity. A promising algorithm, called the label 
propagation algorithm (LPA), was proposed recently [6]. This 
algorithm is particularly suitable for large social networks with 
complex communities because of various reasons [7]. Although 
LPA is suitable for large network, it cannot find overlapping 
communities and the division results are of highly randomness. 
Then COPRA extends the LPA and becomes another classical 
method to detect overlapping communities [8]. In addition, 
several other algorithms also have been designed to overcome 
the limitations of the LPA algorithm. For example, SLPA [8], 
and BMLPA [9] alleviate the problem of monster communities 
by introducing an extra parameter to control the number of 
labels that a vertex can hold. 
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Facing big data analysis, the parallel processing method 
arises at the historic moment. The MapReduce [10, 11] can be 
used to achieve distributed clustering, and has a good 
scalability and fault tolerance to satisfy the needs of the rapid 
growth of data. However, in the distributed framework, the 
clustering algorithm must be operated in a distributed way. 
Many existing algorithms are not distributed and cannot be 
easily represented as a single MapReduce process. 

In this paper, based on the label propagation classical 
model, we not only improve the classical method, but also 
accommodate the algorithm to parallelize in big data network. 
This paper proposes a fast way to adaptive big and confuse 
network, we utilize MapReduce to distributed compute the 
labels of nodes in the network. We use synchronization and no 
data replication. In the LPA, it adopts the asynchronization 
update because of oscillation of labels. If the network has very 
large-scale and real time update, the LPA is not suitable by 
asynchronization update way. Meanwhile it is not suitable for 
distribute dynamic complex network. To avoid the random of 
LPA we propose a new processing of label propagation with 
considering the relationship between the nodes. In this paper, 
the parallel label propagation can combine asynchronization 
and synchronization update way by using MapReduce. It can 
save time cost and avoid the label oscillation. 

The organizational structure of the rest of the paper is as 
follows: section 2 introduces related work of the previous 
studies about label propagation algorithm. Section 3 introduces 
the preliminary knowledge about parallelized manage. Section 
4 proposes a parallelize label propagation algorithm to detect 
the network structure. Section 5 shows the experiment and the 
comparing results with other algorithms. Finally, in section 6 
we discuss the conclusions and the future work. 

II. RELATED WORK 

Community detection by label propagation belongs to the 
class of local move heuristics. In previous work, label 
propagation algorithm is the most common method to detect 
the community structure caused it has approximate linear time 
complexity [12]. However, LPA just can find non-overlapping 
community, so as an extend in COPRA [13], each node updates 
its labels and the belonging coefficients averaged out from the 
coefficients of all its neighbors in a synchronous manner. 
SLPA is a general speaker–listener based information 
propagation process [14]. It spreads label information between 
nodes according to pairwise interaction rules. In the SLPA, 
each node has a memory space to store the received 
information. The probability of observing a label in the 
memory of a node is perceived as the membership strength [15]. 
Compared with the existing label propagation methods, our 
algorithm introduces the concept of confidence to denote the 
importance of each neighbor in the label updating process.  

Hadoop is a distributed system infrastructure, the 
distributed storage and distributed computing is the core of 
distributed system. The most fundamental objective of 
distributed system design is split the large-scale task into many 
small tasks [16], and then assign the small tasks to each node 
with parallel processing, finally generated the results from each 
processors as the final result. MapReduce is the mainly 

programming model of implementation the Hadoop 
architecture. MapReduce [16], as a parallel programming 
model, is good at dealing with large data and large calculation. 
The simple MapReduce has three parts: Map function, Reduce 
function and the main function. If make traditional community 
detection algorithm parallel with MapReduce programming 
model and make a good use of cluster computing advantage to 
handle big users’ data, the execution time of the algorithm will 
be shortening [17]. 

III. PARALLELIZING LABEL PROPAGATION 

Label propagation algorithm has approximate linear time 
complexity and is very suitable for large network community 
detecting. As the number of users on social networking now 
reached hundreds of millions, using the classical algorithm is 
of high computing complex. If we employ the distributed 
computing algorithm (i.e., the computing process of the 
algorithm is distributed) to process the data, the execution time 
of community detection algorithm is much more shortened, and 
the efficiency is also improved significantly. MapReduce, as 
one of the mainstream parallel computing programming 
models, is very suitable for processing large-scale data sets. 
Therefore, it is one of the effective methods to solve the 
problem of the efficiency in community detecting algorithm.  

A. Data preprocessing 

Paralleling community detection algorithm means make 
data sets distribute into each machine averagely, the algorithm 
is calculated on each machine, the calculation process of 
machine independent, input data sets are also independent and 
eventually computed on each machine results together to get 
the results. In the previous discussion, using Hadoop of 
MapReduce programming model algorithm parallelization is 
better choice, so here we will be utilized Hadoop to parallel the 
data sets. 

As discussion of related work, in the process of 
synchronous updating, there is a potential oscillation problem, 
which leads hard to the convergence of the algorithm. In an 
asynchronous update, if a node updates its label value during 
an iteration, the value must be immediately fed back to all the 
nodes in the network. This increases the high coupling between 
the data sets and is contrary to the principles and design of the 
MapReduce original intention. 

As each step of MapReduce is the process of Map and 
Reduce, if we design the MapReduce algorithm in accordance 
with this situation, the process of Map calculates the node 
update value and the process of Reduce is feeding back the 
update value to all neighbor nodes. As a label value update is 
required to feed back to all of the same neighbor nodes, and it 
need a Reduce process. If the network contains enormous users 
and at each node asynchronous label propagation need process 
of Reduce, it will need so many Reduce process and reduce the 
efficiency of the algorithm.  

 In order to solve this problem, we first need to reduce the 
coupling between the input data sets. In this paper we will 
build a data set called NodeModel which contains a node and 
its neighbor nodes. If we consider the network as consist of 
NodeModel, not just nodes and edges. The input set of 



Mapreduce is the NodeModel data sets. We can distribute the 
input sets averagely to each machine to compute the label value 
at the same iteration step.  As the caused oscillation and 
asynchronous update cost lots of time, we combine 
synchronous update with asynchronous update to evolve the 
update method. In this paper, the network was divided into n 
subsets equally. We utilize multi thread to process a part of the 
network, feedback the results to the rest of the subsets. This 
process will be iterated until the whole network completed. 
This method solve the oscillation caused by synchronous and 
the problem of high coupling of dataset caused by 
asynchronous. The structure of large social networking is 
generally sparse [18], in sparse networks, most of the nodes are 
not connected by each other, but the majority of nodes can be 
reached another node through a small number of steps. 
Therefore, the above method combing synchronous with 
asynchronous update is feasible. 

In the step of Map, it managed a part of dataset, the result 
feedback to others datasets in the processing of Reduce. Then 
the output of the Reduce will be as the input to the next Map 
processing. This processing will be repeat until the whole 
datasets have been computed and it means one iteration 
execution is completed. The iteration will be continuing until 
the label value of user nodes reaches the required convergence 
condition. The figure 1 shows the structure of the processing 
by MapReduce. 

B. Label propagation with the confidence between nodes  

In the processing of label propagation, the most important 
link is the computing of label value. In classical label 
propagation, the node chose the maximum of the label 
value, if there are same label value of its neighbors, it will 
pick up a label randomly. In this paper, we consider the 
relationship between nodes as an important indicator to 
compute the label value. In the network, the nodes all in the 
same community have strong relationship and influence to 
each other. In the social network each node corresponds to 
a real user, in the real society, the influence between users 
are different. As different friend has diverse influence to 
their friends, so we should consider the confidence between 
the nodes by the processing of the choice of label 
propagation.  

Definition 1 The confidence of the node v to its neighbor 
node u. Its neighbors are defined as 
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Where N(u) represents the set of neighbors of node u and 
sim(u, v) represent the similarity between nodes u and v. 
Here, we use the Jaccard similarity function [19] 
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Fig. 1. the structure of the processing by MapReduce 

For a pair of  nodes, the confidence measures the intensity 
of their connection. For example, as shown in Fig.2, the  

confidences of node 2 to its neighbors are θ1(2)=0.5, θ

3(2)=0.35, θ4(2)=0.198. It can be seen that the relationship 

between node 2 and its neighbor node 1 is the strongest, 
and the relationship between node 2 and its neighbor node 3 
is stronger than that of node 4. 

This paper proposes the algorithm called LPA-C to 
consider the conference between users to detect the 
overlapping community. As each node has a sequence of its 
neighbor node ID, we create a sequence corresponding to 
the confidence between the node and its neighbor node. 
When the labels propagate, the labels were sent with the 
confidence value of this neighbor node with target node. 
We add the confidence value from neighbor nodes which 

owned same label sent to target node. ( )l v  means whether 

the node v has the label l . If it has this label, the value of 

( )l v  is 1, otherwise, the value is 0. 

( )

( ) ( )* ( )


 l v l

v N i
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Then we introduce inflation operation φin on conference to 

control the overlapping rate, within which is the parameter 

taking real-number values. After applying φin on the labels 

of node i, the belonging coefficient rises to the in-th power. 

The inflation operator φin is defined as 
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The inflation operation φin is also a normalized method and 

can be considered as the label weight to the node. If the 
label weight is bigger than the threshold, we will keep the 
label to the node. In this paper the threshold is set as the 
reciprocal of the node degree. Based on the above 
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definitions, the label updating process is described in the 
following. First, compute the confidence value of each node  

Fig. 2. The simple network 

with its neighbors. Second, for any target node u, each 
neighbor of u sends its labels and the corresponding 
confidence value to u. Third, after u receives the labels and 
the confidence value from its neighbors, we add each 
confidence value by its corresponding confidence to output 
the new confidence value. Fourth, we normalize each new 
confidence value from its neighbors via Eq. (5), and choose 
the label which confidence value is bigger than the 
threshold. 

C. Parallel community detection with label propagation 

The label propagation algorithm is a sequential linear time 
algorithm for detecting communities. In Hadoop based 
parallelized LPAC, we split the network into n partitions of 
nodes to be processed on p processors. Each processor gets its 
allocation of nodes that are contains user-id and recreates 
network induced by local node by creating duplicates of nodes 
that are allocated to other processors but have an edge whose 
other node is the local one. This paper improved the way of 
label update method.  

In the Map processing, the Map function is used to update 
user ID’s new label value. Map function processes the prepared 
data in each row in the iteration phase. It deals with 1/n data by 
the main functions and configuration of the design until all data 
are processed. In this processing, Map function will compute 
the label weight by formula (5), and hold the label which the 
label weight is bigger than threshold. And then assign the new 
labels to the label variable of the user ID and save the record 
order to be called in Reduce processing. 

In the Reduce processing, the Reduce function is used to 
update the label value of users’ neighbors. The input of the 
Reduce function is the output of the Map function. It updates 
the label value based on the user ID and its new label value. 
The format of output is <key (user ID), value (new and old 
label value, neighbor id, the label value of neighbor)>. If the 
ratio between the number of the nodes that keep the same new 
and old labels and the total number of all node meets the 
specified value, the iteration ends, otherwise the iteration 
continues. This processing of parallelize label propagation with 
node confidence called PLPAC as showed in Fig.3. 

 

Fig. 3. The processing of PLPAC  

IV. PFORMANCE EVALUATION OF THE PARALLELIZING LABEL 

PROPAGATION 

In this section, we first describe the experimental 
environment and simulation dataset. Then we describe and 
analysis the experiments that we performed using parallel 
LPA-C. 

A. Framework and setting 

The language of choice for all implementations is Java 
according to the JDK 1.6 standard, allowing us to use object-
oriented and functional programming concepts while also 
compiling to native code.  

The Hadoop cluster environment is used in this experiment 
which consists of 10 machines, a typical master slave mode, 
(Master-Slaves) structure. The cluster consists of a master 
node (Master) and four slave nodes (Slave). In the master-
slave structure, the main nodes are generally responsible for 
cluster management, task scheduling and load balancing, and 
the slave node performs calculation and storage tasks from the 
main node. For representative experiments we average quality 
and speed values over multiple runs in order to compensate for 
fluctuations. Table 1 provides information on the multicore 
platform used for all experiments. 

TABLE 1 

Environmental 

category 
Describe 

Hardware Intel (R) Xeon () CPU (R), 4G memory 

CPU 
Intel(R) Xeon(R) E5-2620v3 @ 2.40GHz, 64 

threads 

Development 
environment 

Eclipse 32, 64bit java version 1.6.0_02 

Map processing 

procedure

Assign user-id to 

variable key

Counter meet 

the condition

Compute the labe 

lweight

Save the data in 

label value

Assign the label 

value to the user ID

Save

Output
Reduce processing 

procedure

Update the 

neighbors label

value

Compare the 

ratio

save

output
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B. Datasets 

This paper performed experiments on a variety of graphs 
from different categories of real-world and synthetic data sets. 
We can use NMI [20] (Normalized Mutual Information) to 
measure the performance of parallel LPA-C with other 
algorithms for the known community structure network. For 
some real networks, there is no known community structure at 
present, so this paper will use the EQ function to evaluate the 
results. 
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In the real network part, we use some classical dataset to 
test and verify the performance of this algorithm, and compare 
with other algorithms. In the artificial network, we can 
experiment the efficiency of the proposed algorithm. The 
details of the experimental data sets were showed in Table 2. 

TABLE 2 

Network Vertices Edges Description 

Karate [21] 34 78 Zachary’s karate 
club 

Dolphins [22] 62 159 Dolphins social 

network 

Football [23] 115 613 Football 
American 

College football 

Netsci [24] 1589 2742 Network 

scientists 

Artificial network [25] 100k to 5M Mu=0.1 to 0.8 LFR 

 

C. Experments 

The experimental results for artificial network with 
varying sizes are presented in Fig. 4. As shown in Fig. 4(a), 
the algorithm accuracy of the LPA-C is consistently better 
than other algorithms on the artificial network. This result 
demonstrates the effectiveness of node confidence value and 
label selection through the NMI values. We can find that the 
performance of COPRA and PCOPRA is not identical and 
neither is the performance of SLPA and PSLPA. There is 
different label propagation update way between the classical 
algorithm (like, COPRA, SLPA) and the parallelized 
algorithms. The synchronization mechanism is necessary for 
designing the parallel steps of the algorithms. On the contrary, 
COPRA and SLPA update the labels asynchronously.  

In the Fig. 4(b) shows how running time varies with 
increasing network scale. Clearly, the total running time 
includes the time spent on communication between processors 
and time spent on execution of the algorithm itself. It is 
obvious that the time cost of all the algorithms increases 
nearly linearly with network size. When the number of 
network nodes in thousands of counting, the speedup of the 

other algorithms caused by parallel computation is not evident. 
It possible caused by the time spent on data processing is 
comparable with the time spent on cluster administration and  

communication. However, when the number of network nodes 
in millions of counting, the speedup of the parallelized 
algorithms shows the advantage than classical algorithms. 
Parallel computation becomes remarkable when network scale 
increases beyond the capability of a single-machine algorithm. 
SLPA and PSLPA run faster than PGLPA and PCOPRA 
because the speak and listen strategy is simpler than the label 
updating strategies used in PLPAC. PSLPA exhibits better 
scalability than SLPA, which is largely due to the parallel 
speak and listen scheme. Although the run time of PLPAC is 
higher than PSLPA, the high NMI value shows the algorithm 
this paper proposed can detect the better communities. 

The experimental results for the real networks are 
presented in Fig. 5. The Fig. 5 shows the performances of the 
algorithms on the real networks are considerably different 
from those on the artificial networks. The networks known the 
structure can utilize NMI to show the performance of 
community detection by those algorithms. The NMI value is 
higher, the structure divided is close to the real structure. 

 

Fig. 4(a). The NMI value in artificial network 

 

Fig. 4(b). The run time in artificial network 



 

Fig. 5. The NMI value in real network 

At the end of each run, we calculated the total execution 
time and speedup using formula shown in (7), efficiency 
according to (8). 

1

n

T
Speedup

T
  (7) 

Where, T1 means the running time on the single machine, 
the Tn means the running time on the cluster. 

Speedup
Efficiency

p
  (8) 

Experiments are conducted on the 1 M network with a 
varying number of machines to evaluate the effect of cluster 
scale on the performance. Fig. 6 shows that a boost on running 
speed caused by adding machines to the cluster is evident. As 
the number of processors increase, the growth rate of speedup 
is decay. Because the time cost by communication and 
management among the machines will rise with more machines. 
Therefore, we should balance the number of the processors to 
detect the accurate community structure in the shortest time. 

 

Fig. 6. Speedup and efficiency for a network 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a paralleling label propagation 
algorithm with node confidence to detect communities. In 
addition, we evaluated the performance of a multi-threaded 
parallel implementation of label propagation algorithm and 
showed that using modern multiprocessor can significantly 
reduce the time required to analyze the structure of different 
networks and output communities. We found that with the rise 
of the numbers of the processors, the rate of speedup reduces 
slowly. This can be explained that there is more and more 
communication time spent on the processors should be 
considered. Our parallelized algorithm PLPAC implementation 
was proven that it can detect the communities in big data 
network with high accuracy. Compared with other algorithms, 
simulation result shows that our algorithm can correctly 
identify overlapping community structures from real data, and 
the improved label propagation with node confidence is very 
effective. Besides, the speedups on various datasets and 
different numbers of machines are satisfactory. 

In our future work, we plan to raise more number of the 
processors and evaluate the experimental performance. In 
addition, we will explore other parallel programming 
paradigms to compare their performance with our parallel 
approach. 

ACKNOWLEDGMENT 

This work has been supported by the Fundamental 
Research Funds for the Central Universities 2016YJS029 and 
the National Natural Science Foundation of China under Grant 
61401015, 61271408. Academic Discipline and Postgraduate 
Education Project of Beijing Municipal Commission of 
Education 

 

REFERENCES 

[1] Girvan  M,  Newman  M  E  J.  Community  structure  in  social  and  
biological networks[J]. Proceedings of the National Academy of 
Sciences of the United States of America, 2002,99(12): 7821-7826 

[2] Raghavan  U  N,  Albert  R,  Kumara  S.  Near  linear  time  algorithm  
to  detect community  structures  in  large-scale  networks[J].Physical  
Review  E,  2007,  76(4): 046106 

[3] Pan X, Yang J, Qiu X. A multi-label model to predict undisclosed 
attributes in microblogging[C]// International Conference on 
Behavioral, Economic and Socio-Cultural Computing. IEEE, 2015. 

[4] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (2010) 
75–174. 

[5]  B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning 
graphs,Bell. Syst. Tech. J. 49 (1970) 291–407. 

[6] U. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect 
community structures in large-scale networks, Phys. Rev. E. 76 (2007) 
12. 

[7] Qishan Zhang, Qirong Qiu, Wenzhong Guo, et al. A social community 
detection algorithm based on parallel grey label propagation[J]. 
Computer Networks. 

[8] S. Gregory, Finding overlapping communities in networks by label 
propagation, New J. Phys. 12 (2010) 104018 

[9] Z.H. Wu, Y.F. Lin, S. Gregory, H.Y. Wan, S.F. Tian, Balanced multi-
label propagation for overlapping community detection in social 
networks, J. Comput. Sci.Technol. 27 (2012) 468–479.  



[10] Dean J, Ghemawat S. MapReduce: Simplified Data Processing on  
Large  Cluster[J].  Communications  of  the  ACM,  2005, 51(1): 107-
114.   

[11] Lee  K,  Lee  Y,  Choi  H.  Parallel  Data  Processing  with  Map-Reduce:  
A  Survey[J].  ACM  SIGMOD  Record,  2011,  40(4): 11-20. 

[12] Ugander J, Backstrom L. Balanced label propagation for partitioning 
massive graphs[C]// ACM International Conference on Web Search and 
Data Mining. 2014:507-516. 

[13] Gregory S. Finding overlapping communities in networks by label 
propagation[J]. New Journal of Physics, 2009, 12(10):2011-2024. 

[14] Xie J R, Szymanski B K and Liu X M 2011 Proceedings of the 11th 
International Conference on Data Mining Workshops, December 11–
14,2011 Canada, pp. 444–449 

[15] Sun He-Li, Huang Jian-Bin, Tian Yong-Qiang, et al. Detecting 
overlapping communities in networks via dominant label propagation[J]. 
Chinese Physics B, 2015, 24(1):551-559. 

[16] Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large 
Clusters.[J]. Communications of the Acm, 2008, 51(1):107-114. 

[17] Dean J, Ghemawat S. MapReduce: A Flexible Data Processing Tool[J]. 
Communications of the Acm, 2010, 54(1):72-77. 

[18] A  Lancichinetti,S  Fortunato.Community  detection  algorithms:a  
comparative analysis[J].Physical ReviewE,2009 

[19] Rousseau R. Jaccard similarity leads to the Marczewski-Steinhaus 
topology for information retrieval[J]. Information Processing & 
Management, 1998, 44(1):87-94. 

[20] Rousseau R. Jaccard similarity leads to the Marczewski-Steinhaus 
topology for information retrieval[J]. Information Processing & 
Management, 1998, 44(1):87-94. 

[21] Zachary W W. An information flow model for conflict and fission in 
small groups[J]. Journal of Anthropological Research, 1997, 44(4): 
452-474. 

[22] M. Girvan and M.E.J. Newman. Community structure in social and 
biological networks. Proceedings of the National Academy of Sciences 
of the United States of America, 99(12):7821–7826, 2002. 

[23] Lusseau D, Boisseau S K, et al. The bottlenose dolphin community of 
doubtful sound features a large proportion of long-lasting associations. 
Behavioral Ecology and Sociobiology, 2004, 54: 496-405. 

[24] Lusseau D, Boisseau S K, et al. The bottlenose dolphin community of 
doubtful sound features a large proportion of long-lasting associations. 
Behavioral Ecology and Sociobiology, 2004, 54: 496-405. 

[25] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas. Comparing 
community structure identification. Journal of Statistical Mechanics: 
Theory and Experiment,2005:P09008, 2005. 

 

 


