
Parallelizing Label Propagation for Overlapping

Community Detection

Naiyue Chen

Key Laboratory of Communication and Information

Systems, Beijing Municipal Commission of Education

Beijing jiaotong University

Beijing, China

13111007@bjtu.edu.cn

Yun Liu

Key Laboratory of Communication and Information

Systems, Beijing Municipal Commission of Education

Beijing jiaotong University

Beijing, China

liuyun@bjtu.edu.cn

Junjun Cheng

China Information Technology Security Evaluation Center

Beijing, China

chengjj@itsec.gov.cn

Qing Liu

China Electric Power Construction Limited by Share Ltd

Beijing, China

liuqing@powerchina.cn

Abstract—Community detection is one of the most important

ways that reflect the structure and mechanism beneath the social

network. The overlapping communities are more in line with the

reality of social network. In the society, the phenomenon of some

members shared membership of different communities reflects as

overlapping communities in the network. Facing big data network,

it is a challenging and computationally complex problem to detect

overlapping communities. In this paper, we proposed highly

scalable variants of a community detection algorithm with

parallelized called Label Propagation with nodes Confidence

(PLPAC). We introduced MapReduce to parallelize the algorithm to

process the big data and guarantee the efficient of community

detection. We implemented the algorithm on real network and

artificial network to evaluate the accuracy and speedup of the

proposed algorithm. Experiments results on many test datasets

illustrated that the improved label propagation method outperforms

some existing methods in terms of accuracy and time efficiency.

Keywords—community detection; label propagation; parallel

computation

I. INTRODUCTION

Social network has become an indispensable part of present
society. Community represents significant property of real
word social network as it reflects the relationship between the
users. Analyzing network structure and detecting community of
people also play an important part in research on social
network. Detecting network community structure is of very
important theoretical significance and practical value for
analyzing network topology structure, network function and
predicting network behavior, and has been widely used in
terrorist organizations, organizational structure management
and some other fields.

Many community detection algorithms have been proposed
in the literatures to identity complex community structures in
social network, such as the Girvan Newman algorithm [1],
some other algorithms based on label propagation algorithm
[2] and optimization algorithm. After improvement and
optimization, these algorithms further reduce time complexity
degrees. However, facing big scale social network, the
calculation time is still too large to detect community
efficiently. The data volume produced by social network is
growing with an enormous rate, such as the Microblogging
[3]. Therefore, the existing traditional community mining
algorithms have great limitations including low computing
power, high computational time, and the bad division result of
the community with high quality.

Community detection is similar to traditional clustering or
graph partitioning problems. Thus, several effective clustering
or graph partitioning algorithms have been applied in
community detection. The Kernighan–Lin algorithm aims to
minimize the difference between intra-edges and inter-edges to
detect communities [5]. However, these early algorithms
cannot detect large network efficiently because of their high
time complexity. A promising algorithm, called the label
propagation algorithm (LPA), was proposed recently [6]. This
algorithm is particularly suitable for large social networks with
complex communities because of various reasons [7]. Although
LPA is suitable for large network, it cannot find overlapping
communities and the division results are of highly randomness.
Then COPRA extends the LPA and becomes another classical
method to detect overlapping communities [8]. In addition,
several other algorithms also have been designed to overcome
the limitations of the LPA algorithm. For example, SLPA [8],
and BMLPA [9] alleviate the problem of monster communities
by introducing an extra parameter to control the number of
labels that a vertex can hold.

mailto:13111007@bjtu.edu.cn
mailto:chengjj@itsec.gov.cn

Facing big data analysis, the parallel processing method
arises at the historic moment. The MapReduce [10, 11] can be
used to achieve distributed clustering, and has a good
scalability and fault tolerance to satisfy the needs of the rapid
growth of data. However, in the distributed framework, the
clustering algorithm must be operated in a distributed way.
Many existing algorithms are not distributed and cannot be
easily represented as a single MapReduce process.

In this paper, based on the label propagation classical
model, we not only improve the classical method, but also
accommodate the algorithm to parallelize in big data network.
This paper proposes a fast way to adaptive big and confuse
network, we utilize MapReduce to distributed compute the
labels of nodes in the network. We use synchronization and no
data replication. In the LPA, it adopts the asynchronization
update because of oscillation of labels. If the network has very
large-scale and real time update, the LPA is not suitable by
asynchronization update way. Meanwhile it is not suitable for
distribute dynamic complex network. To avoid the random of
LPA we propose a new processing of label propagation with
considering the relationship between the nodes. In this paper,
the parallel label propagation can combine asynchronization
and synchronization update way by using MapReduce. It can
save time cost and avoid the label oscillation.

The organizational structure of the rest of the paper is as
follows: section 2 introduces related work of the previous
studies about label propagation algorithm. Section 3 introduces
the preliminary knowledge about parallelized manage. Section
4 proposes a parallelize label propagation algorithm to detect
the network structure. Section 5 shows the experiment and the
comparing results with other algorithms. Finally, in section 6
we discuss the conclusions and the future work.

II. RELATED WORK

Community detection by label propagation belongs to the
class of local move heuristics. In previous work, label
propagation algorithm is the most common method to detect
the community structure caused it has approximate linear time
complexity [12]. However, LPA just can find non-overlapping
community, so as an extend in COPRA [13], each node updates
its labels and the belonging coefficients averaged out from the
coefficients of all its neighbors in a synchronous manner.
SLPA is a general speaker–listener based information
propagation process [14]. It spreads label information between
nodes according to pairwise interaction rules. In the SLPA,
each node has a memory space to store the received
information. The probability of observing a label in the
memory of a node is perceived as the membership strength [15].
Compared with the existing label propagation methods, our
algorithm introduces the concept of confidence to denote the
importance of each neighbor in the label updating process.

Hadoop is a distributed system infrastructure, the
distributed storage and distributed computing is the core of
distributed system. The most fundamental objective of
distributed system design is split the large-scale task into many
small tasks [16], and then assign the small tasks to each node
with parallel processing, finally generated the results from each
processors as the final result. MapReduce is the mainly

programming model of implementation the Hadoop
architecture. MapReduce [16], as a parallel programming
model, is good at dealing with large data and large calculation.
The simple MapReduce has three parts: Map function, Reduce
function and the main function. If make traditional community
detection algorithm parallel with MapReduce programming
model and make a good use of cluster computing advantage to
handle big users’ data, the execution time of the algorithm will
be shortening [17].

III. PARALLELIZING LABEL PROPAGATION

Label propagation algorithm has approximate linear time
complexity and is very suitable for large network community
detecting. As the number of users on social networking now
reached hundreds of millions, using the classical algorithm is
of high computing complex. If we employ the distributed
computing algorithm (i.e., the computing process of the
algorithm is distributed) to process the data, the execution time
of community detection algorithm is much more shortened, and
the efficiency is also improved significantly. MapReduce, as
one of the mainstream parallel computing programming
models, is very suitable for processing large-scale data sets.
Therefore, it is one of the effective methods to solve the
problem of the efficiency in community detecting algorithm.

A. Data preprocessing

Paralleling community detection algorithm means make
data sets distribute into each machine averagely, the algorithm
is calculated on each machine, the calculation process of
machine independent, input data sets are also independent and
eventually computed on each machine results together to get
the results. In the previous discussion, using Hadoop of
MapReduce programming model algorithm parallelization is
better choice, so here we will be utilized Hadoop to parallel the
data sets.

As discussion of related work, in the process of
synchronous updating, there is a potential oscillation problem,
which leads hard to the convergence of the algorithm. In an
asynchronous update, if a node updates its label value during
an iteration, the value must be immediately fed back to all the
nodes in the network. This increases the high coupling between
the data sets and is contrary to the principles and design of the
MapReduce original intention.

As each step of MapReduce is the process of Map and
Reduce, if we design the MapReduce algorithm in accordance
with this situation, the process of Map calculates the node
update value and the process of Reduce is feeding back the
update value to all neighbor nodes. As a label value update is
required to feed back to all of the same neighbor nodes, and it
need a Reduce process. If the network contains enormous users
and at each node asynchronous label propagation need process
of Reduce, it will need so many Reduce process and reduce the
efficiency of the algorithm.

 In order to solve this problem, we first need to reduce the
coupling between the input data sets. In this paper we will
build a data set called NodeModel which contains a node and
its neighbor nodes. If we consider the network as consist of
NodeModel, not just nodes and edges. The input set of

Mapreduce is the NodeModel data sets. We can distribute the
input sets averagely to each machine to compute the label value
at the same iteration step. As the caused oscillation and
asynchronous update cost lots of time, we combine
synchronous update with asynchronous update to evolve the
update method. In this paper, the network was divided into n
subsets equally. We utilize multi thread to process a part of the
network, feedback the results to the rest of the subsets. This
process will be iterated until the whole network completed.
This method solve the oscillation caused by synchronous and
the problem of high coupling of dataset caused by
asynchronous. The structure of large social networking is
generally sparse [18], in sparse networks, most of the nodes are
not connected by each other, but the majority of nodes can be
reached another node through a small number of steps.
Therefore, the above method combing synchronous with
asynchronous update is feasible.

In the step of Map, it managed a part of dataset, the result
feedback to others datasets in the processing of Reduce. Then
the output of the Reduce will be as the input to the next Map
processing. This processing will be repeat until the whole
datasets have been computed and it means one iteration
execution is completed. The iteration will be continuing until
the label value of user nodes reaches the required convergence
condition. The figure 1 shows the structure of the processing
by MapReduce.

B. Label propagation with the confidence between nodes

In the processing of label propagation, the most important
link is the computing of label value. In classical label
propagation, the node chose the maximum of the label
value, if there are same label value of its neighbors, it will
pick up a label randomly. In this paper, we consider the
relationship between nodes as an important indicator to
compute the label value. In the network, the nodes all in the
same community have strong relationship and influence to
each other. In the social network each node corresponds to
a real user, in the real society, the influence between users
are different. As different friend has diverse influence to
their friends, so we should consider the confidence between
the nodes by the processing of the choice of label
propagation.

Definition 1 The confidence of the node v to its neighbor
node u. Its neighbors are defined as

()

(,)
()

(,)
u

i N u

sim u v
v

sim u i







 

Where N(u) represents the set of neighbors of node u and
sim(u, v) represent the similarity between nodes u and v.
Here, we use the Jaccard similarity function [19]

(,)
i j

sim i j
i j

   

   

 

x x x       

Fig. 1. the structure of the processing by MapReduce

For a pair of nodes, the confidence measures the intensity
of their connection. For example, as shown in Fig.2, the

confidences of node 2 to its neighbors are θ1(2)=0.5, θ

3(2)=0.35, θ4(2)=0.198. It can be seen that the relationship

between node 2 and its neighbor node 1 is the strongest,
and the relationship between node 2 and its neighbor node 3
is stronger than that of node 4.

This paper proposes the algorithm called LPA-C to
consider the conference between users to detect the
overlapping community. As each node has a sequence of its
neighbor node ID, we create a sequence corresponding to
the confidence between the node and its neighbor node.
When the labels propagate, the labels were sent with the
confidence value of this neighbor node with target node.
We add the confidence value from neighbor nodes which

owned same label sent to target node. ()l v means whether

the node v has the label l . If it has this label, the value of

()l v is 1, otherwise, the value is 0.

()

() ()* ()


 l v l

v N i

w i i v  (4)

Then we introduce inflation operation φin on conference to

control the overlapping rate, within which is the parameter

taking real-number values. After applying φin on the labels

of node i, the belonging coefficient rises to the in-th power.

The inflation operator φin is defined as

()

()
()

()


 


in

i

in i in

ii N i

w i
w i

w i
 (5)

The inflation operation φin is also a normalized method and

can be considered as the label weight to the node. If the
label weight is bigger than the threshold, we will keep the
label to the node. In this paper the threshold is set as the
reciprocal of the node degree. Based on the above

1/n NodeModel

Map processing

Reduce processing

1/n NodeModel

Map processing

Reduce processing

1/n NodeModel

Map processing

Reduce processing

`
Satisfy iteration condition

definitions, the label updating process is described in the
following. First, compute the confidence value of each node

Fig. 2. The simple network

with its neighbors. Second, for any target node u, each
neighbor of u sends its labels and the corresponding
confidence value to u. Third, after u receives the labels and
the confidence value from its neighbors, we add each
confidence value by its corresponding confidence to output
the new confidence value. Fourth, we normalize each new
confidence value from its neighbors via Eq. (5), and choose
the label which confidence value is bigger than the
threshold.

C. Parallel community detection with label propagation

The label propagation algorithm is a sequential linear time
algorithm for detecting communities. In Hadoop based
parallelized LPAC, we split the network into n partitions of
nodes to be processed on p processors. Each processor gets its
allocation of nodes that are contains user-id and recreates
network induced by local node by creating duplicates of nodes
that are allocated to other processors but have an edge whose
other node is the local one. This paper improved the way of
label update method.

In the Map processing, the Map function is used to update
user ID’s new label value. Map function processes the prepared
data in each row in the iteration phase. It deals with 1/n data by
the main functions and configuration of the design until all data
are processed. In this processing, Map function will compute
the label weight by formula (5), and hold the label which the
label weight is bigger than threshold. And then assign the new
labels to the label variable of the user ID and save the record
order to be called in Reduce processing.

In the Reduce processing, the Reduce function is used to
update the label value of users’ neighbors. The input of the
Reduce function is the output of the Map function. It updates
the label value based on the user ID and its new label value.
The format of output is <key (user ID), value (new and old
label value, neighbor id, the label value of neighbor)>. If the
ratio between the number of the nodes that keep the same new
and old labels and the total number of all node meets the
specified value, the iteration ends, otherwise the iteration
continues. This processing of parallelize label propagation with
node confidence called PLPAC as showed in Fig.3.

Fig. 3. The processing of PLPAC

IV. PFORMANCE EVALUATION OF THE PARALLELIZING LABEL

PROPAGATION

In this section, we first describe the experimental
environment and simulation dataset. Then we describe and
analysis the experiments that we performed using parallel
LPA-C.

A. Framework and setting

The language of choice for all implementations is Java
according to the JDK 1.6 standard, allowing us to use object-
oriented and functional programming concepts while also
compiling to native code.

The Hadoop cluster environment is used in this experiment
which consists of 10 machines, a typical master slave mode,
(Master-Slaves) structure. The cluster consists of a master
node (Master) and four slave nodes (Slave). In the master-
slave structure, the main nodes are generally responsible for
cluster management, task scheduling and load balancing, and
the slave node performs calculation and storage tasks from the
main node. For representative experiments we average quality
and speed values over multiple runs in order to compensate for
fluctuations. Table 1 provides information on the multicore
platform used for all experiments.

TABLE 1

Environmental

category
Describe

Hardware Intel (R) Xeon () CPU (R), 4G memory

CPU
Intel(R) Xeon(R) E5-2620v3 @ 2.40GHz, 64

threads

Development
environment

Eclipse 32, 64bit java version 1.6.0_02

Map processing

procedure

Assign user-id to

variable key

Counter meet

the condition

Compute the labe

lweight

Save the data in

label value

Assign the label

value to the user ID

Save

Output
Reduce processing

procedure

Update the

neighbors label

value

Compare the

ratio

save

output

1

2

3

4

5

6

B. Datasets

This paper performed experiments on a variety of graphs
from different categories of real-world and synthetic data sets.
We can use NMI [20] (Normalized Mutual Information) to
measure the performance of parallel LPA-C with other
algorithms for the known community structure network. For
some real networks, there is no known community structure at
present, so this paper will use the EQ function to evaluate the
results.

1

2 (,)
(,)

() ()

(,)
(,) (,) log()

() ()

() () log ()

y Y x X

n

i i

i

I X Y
NMI X Y

H X H Y

p x y
I X Y p x y

p x p y

H X p x p x

 








 





 (6)

In the real network part, we use some classical dataset to
test and verify the performance of this algorithm, and compare
with other algorithms. In the artificial network, we can
experiment the efficiency of the proposed algorithm. The
details of the experimental data sets were showed in Table 2.

TABLE 2

Network Vertices Edges Description

Karate [21] 34 78 Zachary’s karate
club

Dolphins [22] 62 159 Dolphins social

network

Football [23] 115 613 Football
American

College football

Netsci [24] 1589 2742 Network

scientists

Artificial network [25] 100k to 5M Mu=0.1 to 0.8 LFR

C. Experments

The experimental results for artificial network with
varying sizes are presented in Fig. 4. As shown in Fig. 4(a),
the algorithm accuracy of the LPA-C is consistently better
than other algorithms on the artificial network. This result
demonstrates the effectiveness of node confidence value and
label selection through the NMI values. We can find that the
performance of COPRA and PCOPRA is not identical and
neither is the performance of SLPA and PSLPA. There is
different label propagation update way between the classical
algorithm (like, COPRA, SLPA) and the parallelized
algorithms. The synchronization mechanism is necessary for
designing the parallel steps of the algorithms. On the contrary,
COPRA and SLPA update the labels asynchronously.

In the Fig. 4(b) shows how running time varies with
increasing network scale. Clearly, the total running time
includes the time spent on communication between processors
and time spent on execution of the algorithm itself. It is
obvious that the time cost of all the algorithms increases
nearly linearly with network size. When the number of
network nodes in thousands of counting, the speedup of the

other algorithms caused by parallel computation is not evident.
It possible caused by the time spent on data processing is
comparable with the time spent on cluster administration and

communication. However, when the number of network nodes
in millions of counting, the speedup of the parallelized
algorithms shows the advantage than classical algorithms.
Parallel computation becomes remarkable when network scale
increases beyond the capability of a single-machine algorithm.
SLPA and PSLPA run faster than PGLPA and PCOPRA
because the speak and listen strategy is simpler than the label
updating strategies used in PLPAC. PSLPA exhibits better
scalability than SLPA, which is largely due to the parallel
speak and listen scheme. Although the run time of PLPAC is
higher than PSLPA, the high NMI value shows the algorithm
this paper proposed can detect the better communities.

The experimental results for the real networks are
presented in Fig. 5. The Fig. 5 shows the performances of the
algorithms on the real networks are considerably different
from those on the artificial networks. The networks known the
structure can utilize NMI to show the performance of
community detection by those algorithms. The NMI value is
higher, the structure divided is close to the real structure.

Fig. 4(a). The NMI value in artificial network

Fig. 4(b). The run time in artificial network

Fig. 5. The NMI value in real network

At the end of each run, we calculated the total execution
time and speedup using formula shown in (7), efficiency
according to (8).

1

n

T
Speedup

T
 (7)

Where, T1 means the running time on the single machine,
the Tn means the running time on the cluster.

Speedup
Efficiency

p
 (8)

Experiments are conducted on the 1 M network with a
varying number of machines to evaluate the effect of cluster
scale on the performance. Fig. 6 shows that a boost on running
speed caused by adding machines to the cluster is evident. As
the number of processors increase, the growth rate of speedup
is decay. Because the time cost by communication and
management among the machines will rise with more machines.
Therefore, we should balance the number of the processors to
detect the accurate community structure in the shortest time.

Fig. 6. Speedup and efficiency for a network

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a paralleling label propagation
algorithm with node confidence to detect communities. In
addition, we evaluated the performance of a multi-threaded
parallel implementation of label propagation algorithm and
showed that using modern multiprocessor can significantly
reduce the time required to analyze the structure of different
networks and output communities. We found that with the rise
of the numbers of the processors, the rate of speedup reduces
slowly. This can be explained that there is more and more
communication time spent on the processors should be
considered. Our parallelized algorithm PLPAC implementation
was proven that it can detect the communities in big data
network with high accuracy. Compared with other algorithms,
simulation result shows that our algorithm can correctly
identify overlapping community structures from real data, and
the improved label propagation with node confidence is very
effective. Besides, the speedups on various datasets and
different numbers of machines are satisfactory.

In our future work, we plan to raise more number of the
processors and evaluate the experimental performance. In
addition, we will explore other parallel programming
paradigms to compare their performance with our parallel
approach.

ACKNOWLEDGMENT

This work has been supported by the Fundamental
Research Funds for the Central Universities 2016YJS029 and
the National Natural Science Foundation of China under Grant
61401015, 61271408. Academic Discipline and Postgraduate
Education Project of Beijing Municipal Commission of
Education

REFERENCES

[1] Girvan M, Newman M E J. Community structure in social and
biological networks[J]. Proceedings of the National Academy of
Sciences of the United States of America, 2002,99(12): 7821-7826

[2] Raghavan U N, Albert R, Kumara S. Near linear time algorithm
to detect community structures in large-scale networks[J].Physical
Review E, 2007, 76(4): 046106

[3] Pan X, Yang J, Qiu X. A multi-label model to predict undisclosed
attributes in microblogging[C]// International Conference on
Behavioral, Economic and Socio-Cultural Computing. IEEE, 2015.

[4] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (2010)
75–174.

[5] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning
graphs,Bell. Syst. Tech. J. 49 (1970) 291–407.

[6] U. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect
community structures in large-scale networks, Phys. Rev. E. 76 (2007)
12.

[7] Qishan Zhang, Qirong Qiu, Wenzhong Guo, et al. A social community
detection algorithm based on parallel grey label propagation[J].
Computer Networks.

[8] S. Gregory, Finding overlapping communities in networks by label
propagation, New J. Phys. 12 (2010) 104018

[9] Z.H. Wu, Y.F. Lin, S. Gregory, H.Y. Wan, S.F. Tian, Balanced multi-
label propagation for overlapping community detection in social
networks, J. Comput. Sci.Technol. 27 (2012) 468–479.

[10] Dean J, Ghemawat S. MapReduce: Simplified Data Processing on
Large Cluster[J]. Communications of the ACM, 2005, 51(1): 107-
114.

[11] Lee K, Lee Y, Choi H. Parallel Data Processing with Map-Reduce:
A Survey[J]. ACM SIGMOD Record, 2011, 40(4): 11-20.

[12] Ugander J, Backstrom L. Balanced label propagation for partitioning
massive graphs[C]// ACM International Conference on Web Search and
Data Mining. 2014:507-516.

[13] Gregory S. Finding overlapping communities in networks by label
propagation[J]. New Journal of Physics, 2009, 12(10):2011-2024.

[14] Xie J R, Szymanski B K and Liu X M 2011 Proceedings of the 11th
International Conference on Data Mining Workshops, December 11–
14,2011 Canada, pp. 444–449

[15] Sun He-Li, Huang Jian-Bin, Tian Yong-Qiang, et al. Detecting
overlapping communities in networks via dominant label propagation[J].
Chinese Physics B, 2015, 24(1):551-559.

[16] Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large
Clusters.[J]. Communications of the Acm, 2008, 51(1):107-114.

[17] Dean J, Ghemawat S. MapReduce: A Flexible Data Processing Tool[J].
Communications of the Acm, 2010, 54(1):72-77.

[18] A Lancichinetti,S Fortunato.Community detection algorithms:a
comparative analysis[J].Physical ReviewE,2009

[19] Rousseau R. Jaccard similarity leads to the Marczewski-Steinhaus
topology for information retrieval[J]. Information Processing &
Management, 1998, 44(1):87-94.

[20] Rousseau R. Jaccard similarity leads to the Marczewski-Steinhaus
topology for information retrieval[J]. Information Processing &
Management, 1998, 44(1):87-94.

[21] Zachary W W. An information flow model for conflict and fission in
small groups[J]. Journal of Anthropological Research, 1997, 44(4):
452-474.

[22] M. Girvan and M.E.J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences
of the United States of America, 99(12):7821–7826, 2002.

[23] Lusseau D, Boisseau S K, et al. The bottlenose dolphin community of
doubtful sound features a large proportion of long-lasting associations.
Behavioral Ecology and Sociobiology, 2004, 54: 496-405.

[24] Lusseau D, Boisseau S K, et al. The bottlenose dolphin community of
doubtful sound features a large proportion of long-lasting associations.
Behavioral Ecology and Sociobiology, 2004, 54: 496-405.

[25] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas. Comparing
community structure identification. Journal of Statistical Mechanics:
Theory and Experiment,2005:P09008, 2005.

