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Abstract—This paper evaluates the effect of energy trad-
ing networks on the volatility of coal, oil, natural gas, and
electricity. This research conducts a longitudinal analysis
using a time series of static coal trading networks to gen-
erate a dynamic trading network, and uses the component
causality index as a leading indicator of systemic risk. This
research finds out that the component causality index, based
on degree centrality, anticipates or moves together with coal
volatility and in less degree with gas and electricity volatility
during the period 2007-14. The broad impact of this research
lies in the understanding of mechanisms of the instability
and risk of the energy sector as a result of a complex
interaction of the network of producers and traders.

I. INTRODUCTION

The contraction of oil prices since 2014 has had a
negative systemic effect worldwide especially for oil
producing countries and for oil and energy companies.
In this respect, the volatility of the energy sector has
internal determinants such as the reduction of natural
gas prices since 2005, technological advances in the
production of electricity with less contaminant effects,
the final crisis of 2008, and the geo-political changes that
have affected the oil supply. Even though the evaluation of
these different factors is extremely difficult, the purchase
and sale of coal by power plants, where coal is the major
input in the production of electricity, capture the internal
transformation of the energy sector due to technological
and energy price changes. For this reason, this paper
evaluates the nonlinear correlation between the dynamic
evolution of energy trading networks and the volatility of
the main energy products which are associated with the
systemic risk of the energy sector.

II. THE COAL MARKET

The following three regions provide most of the coal
consumed in the US:

• Western region and Powder River Basin
• Interior region (Illinois, Indiana, and Kentucky)
• Appalachian region

The Western region provides almost all the low sulfur
sub-bituminous coal consumed in the US. The sub-
bituminous coal from the Powder River Basin has low
sulfur content, but a slightly lower heat content per ton.
Mining in this region is done on the surface, which eases

the extraction of coal and dramatically reduces prices at
mine mouth.1

The other two regions produce medium to high volatil-
ity bituminous coal with high sulfur content. Mining is
done underground and is more labor intensive than in the
Western region.

Mines and coal producers have narrowed down the
SO2 emissions of bituminous and sub-bituminous coal
from 1985 to 2005. This contraction is partially explained
by the reduction of sulfur in both types of coal. In the
1970s, electric power plants used bituminous coal exten-
sively. This tendency, however, changed over time due
mostly to the new Clean Air Act (CAA) environmental
regulations and the opening of new, inexpensive sources
of low sulfur coal. As the Powder River Basin provided
substantial amounts of inexpensive sub-bituminous coal,
the prices of sub-bituminous coal dropped and its con-
sumption for electricity production increased. Since 2009,
almost 90% of the coal purchased by plants was either
bituminous or sub-bituminous coal. For this reason, this
analysis concentrates on bituminous and sub-bituminous
coal only.

A. Trade networks

The trade and distance among coal mines and plants
can have a major impact on efficiency. Therefore, in this
research we propose that a longitudinal coal trade network
among US states may be closely associated with the
volatility of energy prices. We are not aware of previous
studies that have evaluated the coal trade network among
different US states, although there are several previous
studies of trade networks, especially, in the international
markets. Hidalgo and Hausmann (2009) create a bipartite
network to represent global trade and the interaction
between countries and their products. They conclude that
differences of income across countries can be explained
by variations on economic complexity. Kali et al. (2013)
use a similar trade network, however, they conclude that
density and trade network proximity are the determinant
factors that explain high growth country rates. Cole et al.
(2013) find that Japanese firms’ emissions are affected by
the emissions of neighboring firms, and Chintrakarn and
Millimet (2006) observe that trade among US states has

1Mine mouth refers to the mine’s location.



a negative environmental impact; however, these two last
articles are not based on trade networks.

III. TECHNICAL APPROACH

A. Methods

In this section, I describe the following methods used to
build corporate news networks and evaluate the causality
among the main time series under analysis.

1) Brownian distance: Székely and Rizzo (2009) pro-
posed a multivariate nonlinear dependence coefficient
called Brownian distance correlation that can be used with
random vectors of multiple dimensions or with strongly
stationary time series. These authors also proposed the
Brownian distance covariance, which captures the co-
variance with respect to a stochastic process. Distance
covariance between the random vectors X and Y measures
the distance between fX , fY and fX,Y where fX and fY
are the characteristic functions of X and Y respectively,
and fX,Y is the joint characteristic function of X and Y
and is obtained as:

ν(X,Y ) =
√
‖fX,Y (t, s)− fX(t)fY (s)‖2 (1)

where t and s are vectors and ‖.‖ is the norm.
Empirically, ν(X,Y ) evaluates the null hypothesis of

independence H0 : fXfY = fX,Y versus the alternative
hypothesis HA : fXfY 6= fX,Y . In this proposal, this test
is the distance covariance test of independence.

Likewise, distance variance is:

ν(X) =
√
‖fX,X(t, s)− fX(t)fX(s)‖2 (2)

Once distance covariance is defined, the distance
correlation R(X,Y ) is obtained from the following
expression:

R2 =

{
ν2(X,Y )√
ν2(X)ν2(Y ))

. ν2(X)ν2(Y ) > 0

0, ν2(X)ν2(Y ) = 0
(3)

Distance correlation takes a value of zero in case of in-
dependence and one when there is complete dependence.

In this paper, I evaluate the non-linear dependence of
any financial time series such as the current value of Y
(Yt) on the l lagged value of X (Xt−l) with the Brownian
distance correlation R(Xt−l, Yt). In particular, I wish to
explore the lead-lag relationship among the time series
under study. If R(Xt−l, Yt) 6= 0 and l > 0, then Xt−l
leads the series Yt. Additionally, if R(Xt−l, Yt) 6= 0,
R(Xt, Yt−l) = 0 and l > 0, then there is an uni-
directional relationship from Xt−l to Yt. However, if
R(Xt−l, Yt) 6= 0, R(Xt, Yt−l) 6= 0 and l > 0, then
there is a feedback relationship between X and Y . On
the contrary, if R(Xt−l, Yt) = 0 and R(Xt, Yt−l) = 0
then there is no lead lag relationship between X and Y
(Tsay, 2010).

2) Centrality: Degree centrality is simply the sum of
the edges of a vertex vi:

Dc(vi)
.
=

∑
j

aij (4)

where aij is an element of the adjacent matrix A of
the undirected graph G(V,E), V = v1, v2, ..., vn is the
set of vertices, E is the set of edges, and eij is the edge
between vertices vi and vj

B. Data

This research explores the impact of the monthly
national trading dynamic among U.S. states and the coal,
oil, natural gas, and electricity spot price volatility from
January, 2007 to December, 2014. I selected a sample
that includes two years before and four years after the
financial crisis period of 2008-2010.

I used the monthly time series of the spot log prices
of the fossil fuel series for the period 2007-2014: West
Texas Intermediate oil (WTI), the Central Appalachian
[bituminous] coal (Coal) and natural gas (Gas) from the
New York Mercantile Exchange (NYMEX). The electric-
ity prices are the total electricity prices for each state from
the sales, revenues and prices statistics of the U.S. Energy
Information Administration. The bituminous and sub-
bituminous coal prices, and coal traded comes from fuel
purchases by steam electric generating plants of 50 MW
or greater for 27 U.S. states (see Table I) reported in the
FERC Form No. 423 Environmental Information Agency
(2005). There are about 10 times more records for bi-
tuminous coal purchases than for sub-bituminous coal
purchases.

C. Research design

I built a national network based on the total coal
purchased where the nodes are US states and the weight
of the edges is the amount purchased from one state to
another state. I conducted a longitudinal analysis using
a monthly time series of static networks to generate a
dynamic trading network from January, 2007 to Decem-
ber, 2014. I calculated degree centrality (Bonacich, 1972,
2007) for each node of the monthly network and obtained
the monthly average of these indicators.

The degree centrality of each state of a network may
represent the importance that a state has at the national
level. Additionally, the centrality of a state might also be
associated with the volatility of coal, natural gas, WTI
and electricity prices as the change of these prices may
also lead to a change of trading patterns or vice versa.The
association between degree centrality and volatility might
become more important during periods of crisis as sys-
temic risk increases and the trade among states may also
change.

For the analysis of systemic risk, I use an index
called Component Causality Index (CCI) proposed by
Creamer (2016) which is the proportion of components of
a particular system or index that have significant causal



TABLE I: U.S. Census Bureau Regions. * denotes states selected for this research.

Region ID Region/Division States included
Northeast R1 New England CT, ME*, MA, RI, VT

R2 Middle Atlantic NJ, NY, PA
Midwest R3 East North Central IL, IN*, MI*, OH*, WI*

R4 West North Central IA*, KS*, MN*, MO*, NE, ND*, SD
South R5 South Atlantic DC, DE, FL*, GA*, MD, NC*, SC*, VA*, WV*

R6 East South Central AL*, KY*, MS*, TN*
R7 West South Central AR*, LA, OK*, TX

West R8 Mountain AZ*, CO*, ID, MT, NV*, NM, UT*, WY*
R9 Pacific AK, CA, HI, OR, WA

relationships with a dependent variable over a given
period. In the case of this research, the components are
the U.S. states and the dependent variables are electricity
and bituminous coal volatility as most of the coal traded
is bituminous coal. The main idea is that if there are
important changes in the components of a system or an
index, the volatility of the system will also be affected,
and therefore could be anticipated by the change of
behavior of its components. I used the CCI as a leading
indicator of systemic risk evaluating the impact of the
network variables on the next period volatility for the
complete time series. I calculated monthly volatility as
the standard deviation of the last 12 months, and I used
the volatility of coal, natural gas, WTI and electricity as
the proxy of systemic risk for each particular market.

Using a moving window based on the previous 12
months, I evaluated if degree centrality has a causal rela-
tionship or have an effect on the next period volatility of
electricity and bituminous coal volatility by state. Based
on these results, I calculated the CCI as the proportion
of states that show significant dependence between degree
centrality and the next period volatility of each state using
the Brownian distance test of independence. Finally, I
evaluated if seven lags of the CCIs have a significant
causal relationship on the volatility and return of coal,
natural gas, WTI and electricity.

This research used the energy, and sna packages for R
to calculate the Brownian distance test of independence
and the degree centrality.2

IV. RESULTS

The CCIs for electricity volatility and for bituminous
coal volatility have a significant correlation at all lags
with bituminous coal volatility, and in most cases with
coal volatility. The correlation is much weaker with
sub-bituminous coal and WTI volatility. All the lags of
the CCI for bituminous coal volatility show significant
correlations with coal and gas volatility. The CCI for
electricity volatility also shows significant correlations
with electricity volatility (lags 1, 6 and 7) and with gas
volatility (lags 2, 6, and 7) (see Table II).

The graphs of the time series also show that CCI for
bituminous coal volatility follows more closely coal and
gas volatility (Figure 1). The CCI for bituminous coal

2Information about R can be found at <http://cran.r-project.org>.

volatility sharply increases about 4-5 months before the
major spikes of bituminous coal volatility (first quarter
of 2001, the fourth quarter of 2004, and the third quarter
of 2009). In general, the causality analysis shows that
certain CCIs act as leading indicators of periods of higher
volatility or when the systemic risk increases.

The impact of CCI on WTI volatility is much weaker
considering that WTI prices are mostly affected by geo-
political factors that affect the oil supply and demand.

The evolution of the bituminous and sub-bituminous
coal trade network included in Section I of Figure 2
shows that very few hubs are important coal providers,
specifically, those from the Mountain region. This process
is more noticeable for the sub-bituminous coal trade net-
work presented in Section II of Figure 2 where Wyoming,
and with less importance Colorado and Montana, are
major fuel providers. Even though New Mexico and
Arizona were disconnected from the network during the
1990s, they connected with the rest of the network during
the 2000s. These states are part of the Mountain region.
Plants of this region, as well as those of West South
Central, may have had a boost to their productivity due
to the proximity to the Powder River Basin, a large sub-
bituminous area.

V. FINAL COMMENTS

This paper demonstrates that the coal trading network
structure have a significant relationship with the next
period market volatility or with systemic risk. The com-
ponent causality index has been applied to this particular
problem; however, it could also be used with other trading
networks. Although the trading activity is closely related
to energy price movements, the behavior of the compo-
nents of a particular market or system may have an impact
on the risk of the system. In this respect, the proposed
CCI can also be integrated into a risk management model
to forecast systemic risk when the CCIs are combined
with main accounting, financial and economic variables.

The broad impact of this research lies in the under-
standing of mechanisms of financial instability and risk
as a result of a complex interaction of the dynamics
of social networks and financial products. Problems of
global financial instability are generally solved using
short term measures that limit the most evident effects
of the crisis, not its causes.



Lags 1 2 3 4 5 6 7

CCI for electricity volatility

Electricity 0.18 * 0.13 0.15 0.14 0.14 0.20 ** 0.19 *
Coal 0.15 0.27 ** 0.29 ** 0.32 ** 0.28 ** 0.32 ** 0.35 **
Coal bit. 0.19 * 0.23 ** 0.24 ** 0.26 ** 0.30 ** 0.37 ** 0.37 **
Coal sub-bit. 0.14 0.12 0.17 * 0.21 ** 0.18 * 0.14 0.20 *
WTI 0.11 0.13 0.21 ** 0.15 0.12 0.12 0.16
Gas 0.14 0.22 ** 0.13 0.16 0.15 0.18 * 0.19 *

CCI for bituminous coal volatility

Electricity 0.11 0.11 0.12 0.14 0.12 0.12 0.12
Coal 0.23 ** 0.24 ** 0.24 ** 0.21 ** 0.23 ** 0.21 * 0.21 *
Bituminous coal 0.21 * 0.20 ** 0.21 ** 0.18 * 0.20 ** 0.19 * 0.17 *
Sub-bituminous coal 0.16 0.14 0.18 * 0.14 0.15 0.13 0.14
WTI 0.17 0.18 * 0.17 0.16 0.17 0.16 0.18
Gas 0.20 ** 0.19 * 0.22 ** 0.22 * 0.21 * 0.20 * 0.21 **

TABLE II: Brownian distance correlation between lagged component causality index (CCI) and volatility of energy
products. Columns 1 to 7 represent lagged values.
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(a) Bituminous coal
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(b) WTI
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(c) Gas
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(d) Electricity

Fig. 1: Coal bituminous, WTI, gas, and electricity volatility, and 1-lag CCI used to forecast bituminous coal. Right Y axis is for CCI.
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.[II. Sub-bituminous coal]
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Fig. 2: Bituminous (I.) and sub-bituminous coal (II.) trade network among states. Every node includes the abbreviation of the relevant state. The widths of the arrows
are associated with the amount traded, and color represents geographic regions: 1. New England (dark yellow), 2. Middle Atlantic (light blue), 3. East North Central
(green), 4. West North Central (light yellow), 5. South Atlantic (dark blue), 6. East South central (orange), 7. West South Central (pink), 8. Mountain (gray), and 9.
Pacific (white).


