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Abstract
The DINA model is one of the most widely used models

in cognitive and skills diagnosis, and several algorithms
have been developed for estimating the model parameters.
However, since the parameter space is very large and
has a mix of binary variables, even medium-sized testing
is extremely challenging. To make the model practical,
a fast optimization algorithm for parameter estimation
is needed. In this study, we converted the determinis-
tic Q-matrix learning problem into a Boolean matrix
factorization (BMF) problem and developed a recursive
algorithm to find an approximate solution while solving
the uncertainty parameters analytically using maximum
likelihood estimation (MLE). We proved that the MLE
is equivalent to the minimum information entropy of
the DINA model. Simulation results demonstrated that
our proposed algorithm converges rapidly to the optimal
solution under suitable initial values of skill − item
association and is insensitive to the initial values of the
uncertainty parameters.

I. INTRODUCTION

In educational and psychological testing and many other
disciplines, cognitive diagnostic models (CDMs) have been
attracting considerable interest [1]. Instead of using a single
total score or several sub-scores to evaluate student perfor-
mance, CDMs are designed to diagnose students’ strengths
and weaknesses and to provide specific information in the
form of attribute mastery profiles. These not only provide
more accurate measurement of learning and progress but also
help to improve instruction methods and suggest possible
interventions to address individual and group needs. Central
to many CDMs is the DINA model, which is one of the
most widely used models in cognitive diagnostic assessment
[2]. The model variables include the well-known Q-matrix
(the deterministic part), which specifies the item-attribute
relationships; the student knowledge state matrix A, which
specifies the student-attribute mapping; and two noise vari-
ables (the random part) related to item response functions,
termed the slip si and guessing gi parameters, which indicate
that a student has or lacks the attributes required by an item
i but nevertheless fails or succeeds in answering the item
correctly[3]. Several algorithms using the EM algorithm and
maximum likelihood estimation (MLE) have been proposed
for learning both deterministic Q-matrix parameters and ran-
dom parameters in the whole parameter space [4][5]. However,

when the parameter space is very large, this mixing of binary
variables makes the achievement of even a medium-sized Q-
matrix extremely challenging.

This paper proposes a new method in which the Q-matrix
and uncertainty parameters (slip and guessing) are derived
separately. The deterministic skill mapping (Q-matrix) has
one-to-many mapping between individual skills and one or
more associated assessment items. The optimization of the
DINA model can therefore be disaggregated, with Q-matrix
learning and the uncertainty slip and guessing parameters
derived separately through an observable real response matrix
R. In particular, we converted the deterministic Q-matrix
learning problem into a Boolean matrix factorization (BMF)
problem based on an ideal response matrix R. We then solved
the model uncertainty parameters analytically, based on an
observable real response matrix R, by minimizing the system
entropy for the DINA model. Based on the above assumption,
we proved that the MLE of the DINA model is equivalent
to the minimum information entropy (MIE) of the system.
Because BMF is an NP-hard problem [6][7][8][9][10], we
proposed a recursive approach to find an approximate solution
for Q-matrix learning in the attribute space.

The rest of this paper is structured as follows. Section
II gives a brief introduction to the DINA model and BMF.
Section III presents the fast MLE-based recursive algorithm
proposed for Q-matrix learning and uncertainty parameter
estimation. In Section IV, we present the results of simulations
of the proposed algorithm. Finally, in Section V, we discuss
the findings and present our conclusions.

II. DINA MODEL AND BOOLEAN MATRIX
FACTORIZATION

In DINA model[11], the probability of a correct response to
an item is determined by two error probabilities(the guessing
probability (gj) and the slip probability (sj)) and one latent re-
sponse variable. Assuming there are K attributes in a particular
domain, a student’s attribute patterns αi = (αi1, αi2, ..., αiK),
called knowledge states, indicate the student’s mastery of
the K attributes. αik = 1 indicates that the ith student has
mastered attribute k, while zero otherwise. As noted above, the
Q-matrix gives the required attributes for each item. The entry
in the Q-matrix (denoted qjk) equals one if item j requires
attribute k, and zero otherwise.



A recent development of BMF has been shown to be
an extremely effective approach for deriving usable results
from binary data [12][13][14][15].The goal of BMF is to
decompose a Boolean matrix (R) into two Boolean matrices,
where one of the matrices, the concept matrix, can be viewed
as a set of meaningful concepts, while the second , called
the combination matrix, describes each observed record. So
proved by study, the problem of CDM could be explained by
BMF.

In CDM, it is necessary to find a decomposition that meets
a certain objective. For example, we may choose to find
the decomposition that minimizes the number of attributes
k. However, this problem corresponds to the minimum tiling
problem originally studied by Geerts et al., which has been
proven to be NP-hard[13]. Using the definition of BMF, we
confirmed that an ideal response matrix R can be expressed
in terms of the following Boolean relations of the knowledge
state matrix A and the Q-matrix in CDM.

R = A�QT (1)

Here, A and Q represent an m-student by K-attribute binary
mastery matrix and an n-item by K-attribute binary Q-matrix,
where student i = 1, ..,m, item j = 1, .., n, and attribute
k = 1, ..,K. The bar notation in equation (1) represents a
logical NOT operation (i.e., 0 = 1, 1 = 0). The goal of BMF
is to determine the matrices Q and A from R, and that of
the factorization algorithm is to minimize the estimated real
response matrix R with the ideal response matrix R from
equation (1). It is clear that equation (1) is more powerful
when the number of latent attributes increases. In addition,
equation (1) adds flexibility to the data-driven learning of the
Q-matrix.

III. BMF AND RECURSIVE ALGORITHM FOR DINA
MODEL

Let R(i, j) and R(i, j) be the real response matrix and ideal
response matrix of the ith student to the jth item, respectively.
The DINA model gives the following conditional probability
formula:

P (R(i, j)|R(ij)) =


1− sj whenR(i, j) = 1;R(i, j) = 1

sj whenR(i, j) = 0;R(i, j) = 1

gj whenR(i, j) = 1;R(i, j) = 0

1− gj whenR(i, j) = 0;R(i, j) = 0

(2)

where R(i, j) = ∨kl=1A(i, l)Q(j, l). For simplification, we
set B = A,C(i, j) = R(i, j). The DINA model then allows
equation (2) to be rewritten as

P (R(i, j)|B,Q) =

m∏
i=1

n∏
j=1

(1− sj)R(i,j)C(i,j)s
R(i,j)C(i,j)
j

× g
R(i,j)C(i,j)
j (1− gj)R(i,j)C(i,j)

where C = B � QT . The optimization problem consists of
finding the maximum likelihood of conditional probability:

E(B,Q) =

m∑
i=1

n∑
j=1

lnP (R(i, j)|B,Q) (3)

=

m∑
i=1

n∑
j=1

R(i, j)C(i, j)ln(1− sj) +R(i, j)C(i, j)ln(sj)

+

m∑
i=1

n∑
j=1

R(i, j)C(i, j)ln(1− gj) +R(i, j)C(i, j)ln(gj)

When C is fixed, by maximizing the likelihood function
E(s, g) with respect to slip s and guessing g, we obtain

sj =
λj

λj + γj
(4)

Here,

γj =

m∑
i=1

R(i, j)C(i, j), λj =
m∑
i=1

R(i, j)C(i, j). (5)

Similarly,

gj =
τj

ρj + τj
(6)

where

τj =

m∑
i=1

R(i, j)C(i, j), ρj =

m∑
i=1

R(i, j)C(i, j) (7)

Substituting the results from (4) and (5) into equation (3), we
obtain

E(B,Q) =

n∑
j=1

[
γj ln

γj
γj + λj

+ λj ln
λj

γj + λj

+ τj ln
τj

ρj + τj
+ ρj ln

ρj
ρj + τj

]
(8)

Based on the DINA model, B and Q are unknown but fixed
parameters, whose uncertainties arise from the slip and guess
variables for each item in the test. Because

γj + λj =

m∑
i=1

C(i, j) = mP (R(:, j) = 1)

τj + ρj =

m∑
i=1

C(i, j) = mP (R(:, j) = 0)

So, we can rewrite equation (8) as follows:

E(B,Q) = −m×H(B,Q)

H(B,Q) (9)

=

n∑
j=1

P (R(:, j) = 1)×
(
sj ln

1

sj
+ (1− sj)ln

1

1− sj

)

=

n∑
j=1

(
P (R(:, j) = 1)H(sj) + P (R(:, j) = 0)H(gj)

)



Here, H(p)is the information entropy of the system. The max-
imum likelihood function E(s, g) is equivalent to minimizing
the information entropy, which represents the uncertainty of
the system. Clearly, in the case sj = gj = 0, where
there is no noise, the entropy function H(s, g) is minimized.
However, in a real system, the presence of noise means that
sj , gj 6= 0. A previous study[6] proposed a method for
Q-matrix learning based on minimizing

∑
j (sj + gj), and

demonstrated through numerical experiments that this was
able to correct errors under certain conditions. However, the
approach is a heuristic one and lacks a theoretical basis
when applied to Q-matrix learning. When the maximum and
guessing parameters sjandgj are less than half, H(sj) and
H(gj) are monotonically increasing functions of parameter
sj or gj , and minimizing sj + gj will produce reasonable
results. As noted above, the MIE method is equivalent to
MLE, which is convergent for parameter estimation in DINA
in a statistical sense. In what follows, E(B,Q) is chosen
as the objective function. By setting rj =

∑m
j=1R(i, j) and

cj =
∑m

j=1 C(i, j), the following equations can be verified:

ρj = cj − rj + γj

λj = m− cj − γj (10)
τj = rj − γj

After solving the slip and guessing probabilities gj and
sj , the objective function is set to the maximum E(B,Q)
in B and Q space. We propose a heuristic algorith-
m for recursively optimizing the B and Q matrices. In
C = B � QT , we denote B = (b1, b2, · · · , bk), Q =
(q1, q2, · · · , qk), Bl = (b1, b2, · · · , bl−1, bl+1, · · · , bk), Ql =
(q1, q2, · · · , ql−1, ql+1, · · · , qk), and Cl = Bl(Ql)T , so that
C = Cl ∨ bl(ql)T . For a fixed C, we randomly select the
l-th column from the B and Q matrices and fix the Bl and
Ql matrices such that the values of bl and ql are optimized.
From the definition C(i, j) = Cl(i, j) + C

l
B(i, l)Q(j, l) and

substituting C(i, j) into equation (5), we obtain

γj =

m∑
i=1

R(i, j)C(i, j)

=

m∑
i=1

[
R(i, j)Cl(i, j) +R(i, j)C

l
(i, j)B(i, l)Q(j, l)

]

= γlj +Q(j, l)

m∑
i=1

R(i, j)C
l
(i, j)B(i, l)

Here, γlj =
∑m

i=1R(i, j)Cl(i, j). Similarly, we have

cj =

m∑
i=1

[
Cl(i, j) + C

l
(i, j)B(i, l)Q(j, l)

]

= clj +Q(j, l)

m∑
i=1

C
l
(i, j)B(i, l)

Here, clj =
∑m

i=1 C
l(i, j). Setting uj =∑m

i=1R(i, j)C
l
(i, j)B(i, l) and vj =

∑m
i=1 C

l
(i, j)B(i, l)

gives

γj = γlj +Q(j, l)uj , cj = clj +Q(j, l)vj

Integrating with equation(10), we get

γj ln
γj

γj + λj
= γlj ln

γlj
m− clj

+Q(j, l)wj,1

where

wj,1 = (γlj + uj)ln
γlj + uj

m− clj − vj
− γlj ln

γlj
m− clj

Analogously,

λj ln
λj

γj + λj
= λlj ln

λlj
clj

+Q(j, l)wj,2

ρj ln
ρj

ρj + τj
= ρlj ln

ρlj
clj

+Q(j, l)wj,3

ρj ln
τj

τj + τj
= ρlj ln

τ lj
clj

+Q(j, l)wj,4

where

wj,2 = (λlj + uj + vj)ln
γlj + uj + vj

m− clj − vj
− λlj ln

λlj
m− clj

wj,3 = (ρlj + uj + vj)ln
ρlj + uj + vj

clj + vj
− ρlj ln

ρlj
clj

wj,4 = (τ lj − uj)ln
τ lj − uj
clj + vj

− τ lj ln
τ lj
clj

respectively. By substituting the above equations into (8), we
obtain

E(B,Q) = E(Bl, Ql) +

n∑
j=1

Q(j, l)(wj,1 + wj,2 + wj,3 + wj,4) (11)

We now present a two-step recursive algorithm for maximizing
the likelihood function E(B,Q). First, we fix B(:, l). To
maximize the value of E(B,Q) with respect to Q(j, l) of
the Boolean value, we use the following updating formula for
Q(j, l):

Q(j, l) = θ(wj,1 + wj,2 + wj,3 + wj,4) (12)

Here, θ(·)is defined as follows:

θ(x) =

{
1 x > 0

0 x ≤ 0

If Q(:, l) is fixed, we can rewrite uj as

uj =

m∑
i=1

R(i, j)C
l
(i, j)B(i, l) = uij +R(i, j)C

l
(i, j)B(i, l)

Here,

uij =

m∑
k=1,k 6=i

R(i, j)C
l
(k, j)B(k, l)



Similarly, for vj ,

uj =

m∑
i=1

C
l
(i, j)B(i, l) = vij + C

l
(i, j)B(i, l)

where

vij =

m∑
k=1,k 6=i

C
l
(k, j)B(k, l)

Therefore, the distance parameter w can be written as,

wj,1 = G1(i, j) +B(i, l)H1(i, j)− F1(i, j)

where

F1(i, j) = γlj ln
γlj

m− clj

G1(i, j) = (γlj + uij)ln
γlj + uij

m− clj − vij
and

H1(i, j) = (γlj + uij +R(i, j)C
l
(i, j))

× ln
γlj + uij +R(i, j)C

l
(i, j)

m− clj − vij − C
l
(i, j)

−G1(i, j)

Analogously, we have

wj,t = Gt(i, j) +B(i, l)Ht(i, j)− Ft(i, j), t = 1, 2, 3, 4

whose variables Ft, Gt, Ht can be concretely expressed as

F2(i, j) = λlj ln
λlj

m− clj
, F3(i, j) = ρlj ln

ρlj
clj
, F4(i, j) = τ lj ln

τ lj
clj

G2(i, j) = (λlj + uij + vij)ln
λlj + uij + vij
m− clj − vij

G3(i, j) = (ρlj + uij + vij)ln
ρlj + uij + vij
clj + vij

G4(i, j) = (τ lj − uij)ln
τ lj − uij
clj + vij

and

H2(i, j) =
(
λlj + uij + (1 +R(i, j))C

l
(i, j)

)
× ln

λlj + uij + (1 +R(i, j))C
l
(i, j)

m− clj − vij − C
l
(i, j)

−G2(i, j)

H3(i, j) =
(
ρlj + uij + (1 +R(i, j))C

l
(i, j)

)
× ln

ρlj + uij + (1 +R(i, j))C
l
(i, j)

clj + vij + C
l
(i, j)

−G3(i, j)

and correspondingly,

H4(i, j) =
(
τ lj − uij −R(i, j)C

l
(i, j)

)
× ln

τ lj − uij −R(i, j)C
l
(i, j)

clj + vij + C
l
(i, j)

−G4(i, j)

Based on this analysis, equation (11) can be rewritten as
follows:

E(B,Q) = E(Bl, Ql) +

n∑
j=1

4∑
k=1

Q(j, l)(Gk(i, j)− Fk(i, j))

+ B(i, l)

n∑
j=1

4∑
k=1

Q(j, l)Hk(i, j) (13)

Using the maximum E(B,Q) value and recognizing that
B(j, l) is also a Boolean value, the updating formula for
B(j, l) becomes

B(i, l) = θ

 n∑
j=1

4∑
k=1

Q(j, l)C
l
(i, j)Hk(i, j)

 (14)

The fast MLE-based parameter estimation algorithm based on
the DINA model is shown as follows: Each iteration step in the

Algorithm 1 Fast MLE-based parameter estimation algorithm.

Input: Initializing response matrix R ∈ {0, 1}m×n and A,A ∈
{0, 1}m×k, attribute Matrix Q ∈ {0, 1}n×k,

Step 1: Computing G = BQT

Step 2: Random(or deterministic) selecting 1 ≤ l ≤ k,
updating the l-column of matrix A and Q
2.1 Computing Gl = B(:, l)Q(:, l)T , Gl = G−Gl,
Cl = θ(Gl),

2.2 updating Q(:, l) based on formula (12)
2.3 sequence updating B(:, l) based on formula (14)

2.3.1 computing uj ←
∑m

i=1R(i, j)C
l
(i, j)B(i, l)

vj =
∑m

i=1 C
l
(i, j)B(i, l)

2.3.1 For i = 1, · · ·,m Updating u and v as follows
i) uij ← uj −R(i, l)C

l
(i, j)B(i, l)

vij ← vj − C
l
(i, j)B(i, l)

ii) sequence update B(:, l) based on formula (14)
iii) uj ← uij +R(i, l)C

l
(i, j)B(i, l)

vj ← vij + C
l
(i, j)B(i, l)

2.3.3 repeat step 2.3.2 until B(:, l) convergence
2.4 repeating step 2.2 till Q(:, l) and B(:, l)

convergence:
2.5 updating B : B(:, l)← B(:, l);
Q : Q(:, l)← Q(:, l); G : G = Gl+B(:, l)Q(:, l)T ;

Step 3: repeating step 2 till approach error immobility or less
than a given threshold.

above algorithm identifies a local maximum. The convergence
of the fast MLE-based parameter estimation algorithm is
demonstrated by the follow theorem.

Theorem: The fast MLE-based parameter estimation algo-
rithm is convergent after a finite number of iteration steps.

Proof: The proof is divided into two steps, as follows:
1) During updating of the algorithm in step 2.2, the likeli-



hood function is not reduced. From equation 11, we have

E(B,Q) = E(Bl, Ql)+

n∑
j=1

Q(j, l)(wj,1+wj,2+wj,3+wj,4)

Since wj,k is independent of Q(j, l), j = 1, · · ·n,

E(Bold, Qold) = E(Bl, Ql) +

n∑
j=1

Qold(j, l)

4∑
t=1

wj,t

E(Bnew, Qnew) = E(Bl, Ql) +

n∑
j=1

Qnew(j, l)

4∑
t=1

wj,t

Therefore,

∆E = E(Bnew, Qnew)− E(Bold, Qold)

=

n∑
j=1

(Qnew(j, l)−Qold(j, l))

4∑
t=1

wj,t

For ∀α ∈ R and δ ∈ {0.1}, θ(α) ≥ δα, and hence, ∆E ≥ 0.
2) As the right-hand side of formula (13) is independent of

B(i, l) for 1 ≤ i ≤ m at each iteration step,

∆E = E(Bold(i, l), Qold(i, l))

n∑
j=1

4∑
k=1

(Q(j, l)C
l
Hk(i, j)

For the same reason, ∆E ≥ 0. Because the value of E(B,Q)
has a finite bound, the algorithm converges after a finite
number of iterations.

IV. SIMULATION RESULTS

A. Suitable and validated objective function for Q-matrix
Learning

We first confirmed that MLE is a fine objective function
for use in Q-matrix learning. For simplicity and to facilitate
comparison with previous studies [5], we fixed the knowledge
state matrix A-matrix as A0 in all simulations. Initially, we
defined Q0 as a true Q-matrix. The ideal response pattern R
can be generated from R = A0 �QT

0 . For the given slip and
guessing probabilities, s and g, we obtained a real response
R-matrix R0 from R by equation (2). In the absence of prior
knowledge, if a brute force search in the entire A and Q space
can recover the Q0 directly from the generated real response
R0 by maximizing the likelihood function in equation (4), the
MLE method can be considered a valid objective function for
Q-matrix learning. To verify this, we took a 5 × 3 Q-matrix
Q, computed all the different 5× 3 Q using equation (4), and
obtained the optimal Qopt as Qopt = argQ∈{0,1}5×3 E(B,Q).
The simulation was run 100 times with a different true Q0 set
as the input to the Q-matrix in each run. All experimental
values of Qopt were exactly equal to Q0, which strongly
supported our claim that this objective function is appropriate
for a small-sized Q-matrix. We then addressed larger Q0s.
Because it is not practical to search all possible Q-matrices,
to reduce computational complexity, we narrowed down the
search space by changing one or two element(s) of the Q0.
We used a 20 × 3 Q0 as a case study. When changing

a single element, the search space became
(
60
1

)
= 60, and

when changing two elements, it became
(
60
2

)
= 1770. These

results confirmed that Q0 is also a local optimal solution when
analyzing a larger-sized matrix.

B. Performance of Fast MLE-based parameter estimation
algorithm

In this section, we compared the estimated Q-matrix and
the true Q-matrix under various settings, using two datasets
from an earlier paper [5]. Initially, the same Q-matrices of
20 × 3 (20 items by 3 attributes) and 20 × 4 (20 items by 4
attributes) were used. These are denoted as Q1 and Q2.

The slip and guessing parameters were set as s = g = 0.2
for all items, and 100 datasets were generated at sample sizes
of M = 100, 300, 500, and 1000. The MLE-based Q-matrix
learning algorithm was implemented with a starting matrix Q,
specified as follows. Following the assumption in the original
paper that that three items were misspecified [5], Q was
constructed by randomly misspecifying nine elements for Q1,
which represents the maximum possible number of elements in
the three misspecified items. In our setting, the nine elements
were randomly selected and not necessarily limited to the three
items. The simulation results under the condition s = g = 0.2
are shown in Table 1. Q̂ = Q0 gives the frequency with
which Q was correctly estimated, from the 100 independent
simulations with different numbers of students. The first row
shows that Q̂ recovered the true Q1 36 times at a sample
size of 100, and that Q̂ never failed to derive the true Q1

at sample sizes of 300 or more. In contrast, in the results
presented in [5], Q̂ could only recover the true Q-matrix 98
times even at a sample size of 500. This demonstrates the
superior performance of our novel algorithm.

The results for Q2 under the same conditions are presented
in the second row of Table 1. It can be seen that when the
same number of nine elements was randomly misspecified, the
Q2 estimator did not perform as well as Q1.

TABLE I
NUMBER OF CORRECTLY ESTIMATED Q-MATRICES IN 100 SIMULATIONS

WITH STUDENT NUMBERS OF M = 100, 300, 500, AND 1000 FOR Q1 AND
Q2 (s = g = 0.20).

M = 100 M = 300 M = 500 M = 1000

Q̂ = Q0 Q̂ = Q0 Q̂ = Q0 Q̂ = Q0

Q1 36/100 100/100 100/100 100/100
Q2 3/100 64/100 94/100 100/100

Next, we investigated the relationship between s, g and the
number of correctly estimated Q-matrices. Our example used
Q2 and four conditions in which s = g was equal to 0.10, 0.15,
0.20, and 0.25, as shown in Table 2. The number of correctly
estimated Qs was shown to increase as s and g increased. A
comparison of the same Q2 in Tables 1 and 2 shows that at
a sample size of M=100, the number of correctly estimated
Q increased significantly from 3 at s = g = 0.2 to 56 at
s = g = 0.1. At M=300, the number of correctly estimated Q



Fig. 1. Convergence of slip and guessing parameter.

was 64 from 100 at s = g = 0.2, but all 100 were correctly
estimated at s = g = 0.1.

TABLE II
NUMBER OF CORRECTLY ESTIMATED Q-MATRICES IN 100 SIMULATIONS
WITH STUDENT NUMBERS OF M = 100, 300, 500, AND 1000 FOR Q2 AT

DIFFERENT VALUES OF s,g.

M = 100 M = 300 M = 500 M = 1000

s, g Q̂ = Q0 Q̂ = Q0 Q̂ = Q0 Q̂ = Q0

0.10 56/100 100/100 100/100 100/100
0.15 29/100 98/100 100/100 100/100
0.20 3/100 64/100 94/100 100/100
0.25 1/100 25/100 55/100 92/100

Table 3 compares the estimation and the number of mis-
specified elements of Q2 at s = g = 0.2. The results showed
that under the same conditions of M and s, g, the more similar
the Q matrix was to the true Q0, the more likely it was that
the Q was estimated correctly. The 12 randomly misspecified
elements in Table 3 represent the maximum possible number
of elements in the three misspecified items of Q2, which
corresponds to the results reported in [5]. When 12 elements
of the Q were misspecified, a larger sample size was needed
to recover the true Q0. However, at M=500, Q̂ recovered the
true Q-matrix 94 times, compared with 82 times when the
existing method was used.

TABLE III
NUMBER OF CORRECTLY ESTIMATED Q-MATRICES OF 100 SIMULATIONS

WITH STUDENT NUMBERS OF M = 100, 300, 500, AND 1000 FOR Q2
WITH DIFFERENT NUMBERS OF MISSPECIFIED ELEMENTS IN THE

Q-MATRIX (s = g = 0.20).

M = 100 M = 300 M = 500 M = 1000

number Q̂ = Q0 Q̂ = Q0 Q̂ = Q0 Q̂ = Q0

3 7/100 76/100 98/100 100/100
6 6/100 77/100 94/100 99/100
9 3/100 64/100 94/100 100/100
12 2/100 58/100 94/100 100/100

On the other hand, the simulation results demonstrated that
our algorithm also performed well when estimating the slip
and guessing parameters. When the true values of both s and
g parameters were set at 0.10 and different initial values were
given to s and g for different items, our algorithm generated

estimators that converged at the true value. The s and g
estimations for five items are given in Figures 1, respectively.

V. CONCLUSIONS

In this paper, we proposed a fast MLE-based recursive
algorithm capable of deriving the Q-matrix and uncertainty
parameters for a DINA model. Specifically, we converted the
deterministic Q-matrix learning problem to a BMF problem
and used a recursive algorithm to find an approximate so-
lution while solving the uncertainty parameters analytically
through MLE. Simulation results confirmed that our proposed
algorithm converged rapidly to the optimal solution under
suitable initial conditions and outperformed the conventional
method[5]. It was demonstrated that the convergence of the
uncertainty parameters was insensitive to the initial value
setting. Ongoing work suggests that because the information
entropy is a convex function of the variables, which depends
on the inner product of R and R, a lower time complexity
algorithm can be derived from the convex property of the
objective function.
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