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Abstract—Contagion models have been used to study the
spread of social behavior among agents of a population, such
as information diffusion, social influence, and participation to
collective action (e.g., protests). Key players, which are typically
high-degree, -k-core or -centrality agents in a networked popu-
lation, are considered important for spreading social contagions.
In this paper, we ask whether contagions can propagate through
a population that is void of key players. We use Erdős-Rényi
random graphs as a representation of unstructured popula-
tions that lack key players, and investigate whether complex
contagions—those requiring reinforcement—can spread on them.
We demonstrate that two game-theoretic contagion models that
utilize common knowledge for collective action can readily spread
such contagions, which is a significant difference from classic
complex contagion models. We compare contagion dynamics
results on unstructured networks to those on more typically-
studied, structured social networks to understand the role of
network structure. We test a total of 14 networks. The two
common knowledge models are also contrasted to understand
the effects of different modeling assumptions on dynamics. We
show that under a wide range of conditions, these two models
produce markedly different results.

Keywords—common knowledge; collective action; key
players; social modeling; complex contagion

I. INTRODUCTION

A. Background and Motivation

Contagion processes that include the transmission of emo-
tions, information, and influence among members of net-
worked populations have been empirically identified on Digg,
Twitter, and Facebook [1], [2], [3]. By and large, these
processes have been modeled using unilateral models of
contagion spreading, such as independent cascade, threshold,
linear threshold, and variants [1], [4], [3]. In these models,
which we refer to throughout as classic diffusion (CD)
models, agents (vertices in a social network) are influenced
by their immediate neighbors (with whom they form edges).
Each agent unilaterally makes an individual decision whether
to change state from an inactive state 0 to an active state 1
based on the states of his/her neighbors. We focus on complex
contagions, where an agent v requires multiple neighbors to
be in the active state in order to change to state 1 [5]. The
minimum number of influencing neighbors in state 1 required
by v to change state is given by its threshold θv .

Social networks over which these contagions spread are
often characterized by heavy-tailed degree distributions (e.g.,
scale-free (SF) or exponential decay (ED) distributions) [6],
[7]. In the social networks domain, these highly connected
agents are called hubs, a type of key player. Other types of

key players are agents with high betweenness or closeness
centralities, or k-cores [8]. McAdams [9] and others have
argued that contagions initiate with these key players, and
algorithms exist to identify them in social networks [10]. Most
of the above types of contagion studies have been performed
on networks with one or more types of key players.

The central question driving our work is the following:
can complex contagions initiate and propagate through a
population that is void of key players?

We use agent-based simulation to study two classes of
contagion models: a class of CD models and a class of game-
theoretic models that we refer to as common knowledge (CK)
models. CD models, as stated previously, are unilateral models.
CK models, in contrast, are coordination-based models in
which each agent makes a decision, with the potential to
achieve mutual benefits only if her decision is consistent with
those of others. That is, agents may cooperate to change state
jointly. This collective behavior requires not only that agents
know about each other (e.g., their thresholds and states) but
also that this information is common knowledge. We evaluate
two CK models: the Chwe [11] model and the common
knowledge on Facebook (CKF) [12] model. All models are
described in Section III below.

Although we study heavy-tailed social networks, we pri-
marily investigate contagion spreading on Erdős-Rényi (ER)
graphs. This is because ER networks are arguably the canoni-
cal network type that is void of structure and key players. ER
networks exhibit the following trait: a large fraction of agents
possess maximum (or near maximum) degree, betweenness
centrality, and k-core (e.g., [13] and Figure 1 below). Hence,
key players—distinguished agents with appreciably greater
degrees, centralities, or k-cores than most other agents—are
absent in ER networks. ER networks represent those that might
form among random people who meet in a public area (e.g.,
city center, park) to interact.

The question then becomes whether complex contagions can
propagate through populations represented as ER networks.
A simple argument shedding light on threshold-based CD
models is the following. Suppose the probability pe that an
edge exists between two arbitrary agents of an ER network is
pe = 0.0004, which is realistic for many reasonable numbers
of agents and average degrees of social networks. Then, in a
unilateral threshold model [5], suppose a person u in state 0
has θu = 2, meaning that it must form edges with two agents
already in state 1 in order to change to state 1. Since edges
in an ER graph independently exist, the probability that u is



attached two agents (regardless of state) is p2e ≈ 10−7. Hence,
it can be difficult to propagate complex CD contagions in
ER networks. Experimental data support this argument [14].
These results motivate the study of CK models as alternative
contagion models.

B. Contributions

A summary of our major contributions follows.
1. Common knowledge models (Chwe and CKF) pro-
vide mechanisms to initiate and propagate contagions in
ER networks (that lack key players) for much greater
thresholds than classic diffusion (CD) models. This finding
answers affirmatively the fundamental question posed in this
work—whether CK models can produce wide-spread conta-
gion transmission in networks without key players. As an
example, in ER graphs with n = 104 vertices and pe = 0.001,
the maximum agent thresholds that can produce cascades
for CD, CKF, and Chwe models are 2, 22, and > 1000,
respectively. This is the first paper that uses CK models to
address key player problems. For two of the three sets of
simulation results (Section V), on both ER and heavy-tailed
networks, there is no contagion spread based on the CD model.

2. There are significant differences in the behaviors of the
Chwe and CKF models over three classes of networks:
scale-free (SF), exponential decay (ED), and Erdős-Rényi
(ER) graphs. We demonstrate through simulations and explain
via model mechanisms why the Chwe model more readily
propagates contagions: the model assumes direct edges are
formed between a node and its distance t edges at times
t ≥ 1. Differences between the two models are smallest for
power law or SF networks, and greatest for ER networks,
for the conditions examined in this work. Furthermore, the
Chwe model is essentially insensitive to network structure
over all three network classes, in terms of final fraction of
active agents. By comparison, contagion with the CKF model
is affected by different network classes.

3. The maximum threshold that can produce widespread
contagion propagation in ER networks is relatively insen-
sitive to changes in edge probability, pe, for the CD and
CKF models. However, for the Chwe model, the maximum
threshold changes significantly. In the Chwe model, edge
probability, pe, for the ER networks affects the maximum
thresholds that can generate widespread contagion early in the
contagion process. This is related to the changing network
assumption in the Chwe model, which we characterize in
Section IV. The Chwe and CD models produce similar results
if the network is assumed to be constant over time.

II. RELATED WORK

There is a vast number of contagion models where agents
make unilateral decisions to change state based only on
the current states of their neighbors, which we refer to as
classic diffusion (CD) models herein. Several models are given
in [12], [14], [15]. Others include those based on bursti-
ness [16] and other factors [3]. Multiple interacting contagions

on Twitter are modeled in [15], which considers a URL in a
post as a contagion.

Contagion models of Facebook include modeling news
feeds, which is a broadcast mechanism similar to that of
Twitter [17], [2]. Although Facebook walls are studied exper-
imentally [18], we are not aware of any other study (besides
the CKF model) that models the Facebook wall mechanism.

ED and SF degree distributions arise frequently in social
networks [6]. Various CD studies evaluate network structure;
e.g., lattice and SF networks [19], and highly clustered net-
works [20]. Here, we use networks with SF, ED, and ER
degree distributions to study contagion dynamics that are
driven by CK. We know of no studies of this kind for different
CK models, or of studies that compare CK models on this
range of graph classes.

Chwe studies the effects of strong and weak links in his
CK model [21]. A strong link is one that is part of triangle
subgraphs (triadic closure). However, his arguments are based
on the initially given social network. We demonstrate in
Section IV that in Chwe’s model, all edges evolve into strong
edges; even the ones that are initially weak.

III. CONTAGION DYNAMICS MODELS

We are interested in the contagion dynamics underlying the
three theoretical models within the context of a collective
action problem: the Chwe and CKF common knowledge
models and a CD model. We begin with preliminaries for the
models. Owing to the complexity of the CK models, complete
formal descriptions are not possible here. We develop the
basics and refer the reader to the provided references.

Suppose there is a finite set of people N = {1, 2, ..., n}
and each person i ∈ N chooses a state ai ∈ {0, 1}, where 0
(resp., 1) is the inactive (resp., active) state. The state of i
at time t is ait. Each person i has an idiosyncratic private
threshold θi ∈ {1, 2, ..., n}, which is the minimum number of
people that must adopt the contagion (i.e., be in state 1) for
i to adopt it. Individuals in N are connected by edges in the
social network G, which denote pairwise interactions. Let N1

i

be the set of distance-1 neighbors of i in G.

A. Classic Diffusion (CD) Models [5], [1]

In the CD model, an agent i changes from state 0 to 1
based on the number of her direct neighbors that are already
in state 1 (if it is greater than or equal to her threshold θi). This
is referred to as the network-based threshold. State transition
of an agent i at time t is based on the following rule:

ait =

{
1 if #{j ∈ N1

i : ajt−1 = 1} ≥ θi
0 otherwise. (1)

A person uses two pieces of information: (i) her own thresh-
old, and (ii) the number of her distance-1 neighbors who
have already changed to the active state (namely, state 1).
Individuals, then, unilaterally decide whether to change state.
In these models, the contagion requires “seeds” (agents that
are in state 1 at t = 0) to initiate.



B. Chwe Common Knowledge (Chwe) Model [11], [21]

The game-theoretic models of contagion consider a coor-
dination game in which two or more people each make a
decision to participate, with the potential to achieve shared
mutual benefits only if their decisions are consistent. Each
individual must take into account what she expects the other
actors to do. In game-theoretic contexts, coordination requires
that people know each others’ willingness to participate, and
that this information is common knowledge among a sufficient
number of people. Common knowledge among a set of people
implies that: they know each others’ thresholds (and states)
and they know that everyone knows their thresholds (and
states). Therefore, they can count on each other, and jointly
participate. As these models allow for mutual participation,
contagion can emerge where none previously existed (i.e.,
“seeds” are not required for the initiation of the contagion).

Chwe [11], [21] models social structure as a communication
network through which every person i tells her neighbors her
willingness to participate, i.e., her θi and state ait. The com-
munication network helps coordination by creating common
knowledge at each discrete time.

Given person i’s threshold θi and everyone’s states at =
(a1t, a2t, . . . , ant), his utility U at time t ∈ {0, 1, . . . , T} can
be formulated as

Uit =

 0 if ait = 0
1 if ait = 1 ∧ #{j ∈ N : ajt = 1} ≥ θi
−z if ait = 1 ∧ #{j ∈ N : ajt = 1} < θi

(2)

where −z < 0 is the penalty he gets if he participates and
not enough people join him. Thus, a person will participate as
long as he is sure that there is a sufficient number of people
(in the population) in state 1. A person always gets utility 0
by staying in state 0 regardless of what others do since we
do not consider free-riding problems. When he participates,
he gets utility 1 if the total number of people in state 1 is at
least θi.

The Chwe model assumes that the network itself is common
knowledge, so that agents know about all communication that
occurs between all members of the population. The dynamic
approach in Chwe [21] assumes that every individual connects
to his/her neighbors at increasing geodesic distance at each
time step; this eventually results in complete network, if it
is originally connected. The Chwe model utilizes a hierarchy
of cliques as the network substructure that produces common
knowledge. That is, every set M clique of vertices that forms
a clique in G also forms a CK set.

C. Facebook Common Knowledge (CKF) Model [12]

In the CKF model [12], the utility function is the same as
that of the Chwe model (Equation 2). However, the communi-
cation technology is “Facebook-type” communication in which
people write on each others’ “walls.” In other words, neighbors
at distance-1 write their thresholds and states on each others’
walls. Posts on an agent’s wall are observed by all of his/her
neighbors in distance-1. Consequently, person i knows about
the thresholds and states of the people in his ‘ball’ which

TABLE I
NETWORK CHARACTERISTICS FOR 11 ER GRAPHS AND THREE

NETWORKS THAT ARE MORE TYPICAL OF SOCIAL NETWORKS. HERE, n
AND m ARE THE NUMBERS OF VERTICES AND EDGES, RESPECTIVELY; pe

IS THE PROBABILITY OF AN EDGE BETWEEN TWO VERTICES IN AN ER
GRAPH; dave AND dmax ARE THE AVERAGE AND MAXIMUM DEGREES;

AND diam IS THE GRAPH DIAMETER.

Network n pe m dave dmax diam
FB 43,953 –NA– 182,384 8.3 223 18
NRV 769 –NA– 4,551 11.8 20 7
SF1 4,956 –NA– 45,031 18.2 269 8
ER∗

FB 43,945 1.9× 10−4 182,650 8.3 21 9
ER1-
ER10;
10 nets

10,000 min: 0.001,
max: 0.01

min:
49,590,
max:
498,928

min:
9.9,
max:
99.8

min:
24,
max:
139

max:
7,
min:
3

∗This ER class represents three networks with similar properties and
similar contagion dynamics, and so the other two are omitted.

is denoted by Bi = {j ∈ N2
i }, where N2

i is the set of all
neighbors within distance-2 of i. Motivated by online social
networks, this allows for friend-of-friend communication. It
naturally follows that only local information is known to any
agent i in the network.

The network substructure that produces common knowledge
in the CKF model is the biclique, M biclique; i.e., the complete
bipartite graph [12]. Nodes in the biclique jointly change states
if their thresholds are all less than the size of the CK set.

Another mechanism by which agents change state 0→ 1 in
the CKF model is through threshold inference. Given an agent
i in state 0, and a neighbor j ∈ N2

i in state 1 with threshold
θj , i can infer from j that at least θj +1 agents are in state 1.
If θi ≤ θj + 1, then i changes to state 1.

IV. NETWORKS AND RESULTS

In this section, we present the networks used for this study,
the rationale for their selection, and the degree distributions of
selected networks. We also describe special network structure
considerations for the Chwe model; they provide insights into
the contagion dynamics results of Section V for this model.

Table I summarizes the networks of this study, and their
properties. We use 11 ER graphs and three mined social
networks. The networks in the table can be grouped in three
sections. The first group includes: (i) a Facebook network
(FB) [22], (ii) a high school student network from the New
River Valley area of Virginia (NRV ), which has an ER-
like degree distribution, and (iii) a scale-free network (SF1)
generated using the preferential attachment method in [6]. The
second set contains one graph: an ER graph where the number
of vertices and average degree match those of the FB network.
This is to study the effects of network structure, since the FB
network has an exponential decay (ED) degree distribution [6].

The last group of networks in Table I represents ten net-
works (ER1 through ER10) with constant n. They are gener-
ated by systematically varying the edge placement probability,
pe, from 0.001 to 0.01 in increments of 0.001. These networks
are used for a parametric study to compare dynamics across
models in Section V.



Figure 1 provides degree distributions for several networks
of this study. For example, the degree distribution for the
ERFB network displays the characteristic shape of ER net-
works indicating that most nodes have the average degree
of the network; relatively few nodes have greater and lesser
degrees than the average. The NRV network has an ER-like
degree distribution. The FB graph shows the classic ED de-
gree distribution. An SF network (SF1) has the characteristic
straight-line relation in log-log plots [6].

If we write dmax = αdave, then α ≈ 2 for ER networks.
In contrast, for ED and SF networks, α = 10, 100, or higher.
(See Table I and note that in [7], the Epinions network with
an SF degree distribution has α = 223.6.) This is what we
mean by the existence or non-existence of key players (here,
with respect to high-degree agents): dmax in ER networks is
not distinguished with respect to dave, relative to other types
of networks that are more typical of social networks (e.g., ED
and SF). See [13] for comparable betweenness data across
network classes (not the particular networks studied here); we
have analogous k-core data for these networks (not shown for
space limitations).
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Fig. 1. Degree distributions for se-
lected graphs of this study.
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Fig. 2. Geodesic distance over
which direct edges are formed be-
tween vertices in the Chwe model.

Figure 2 describes how the network structure changes over
time following the dynamics in the Chwe model described
in Section III. The figure is generated with the following
procedure. Given a graph G, each vertex is connected directly
to its neighbors of geodesic distance 1. We call this graph
G1(= G). For each vertex v, we identify the set Sk of vertices
within geodesic distance k of v in the original graph (i.e., those
vertices that are within k hops of v in the original graph).
An edge is placed between v and each vertex in Sk, and
redundant edges are eliminated to maintain a simple graph.
This generates graph Gk. Graphs Gk, for 2 ≤ k ≤ 5, are
constructed for each network in this work. For each Gk, we
compute the average fraction of vertices to which each vertex
is connected; i.e., the normalized average degree in Gk. In
Figure 2, we plot data for ER1 through ER3 and FB, shown
in Table I, as well as several mined social networks from [7].
An ordinate value of 1.0 means that each vertex of the graph is
connected to every other vertex of the graph; i.e., the original
graph has transformed into a clique. Given a geodesic distance,
the ER networks have greater connectivity than almost all of
the other networks. This is because edges are placed randomly
in ER networks, meaning that there are long-range edges in
ER graphs; e.g., compare the diameters for FB and ERFB .

These long-range edges aid the placement of new edges in the
Chwe model.

This construction is significant because it is part of the
dynamics of the Chwe model. That is, at each successive
time step, a vertex increases its knowledge of the states and
thresholds of other vertices at an increased geodesic distance
of 1. Thus, because initial conditions correspond to t = 0
and G1, and the dynamics at t = 1 are computed on G1.
At time t, the graph on which dynamics are computed is Gt.
From Figure 2, we see that by time t = 5, most graphs—and
particularly ER graphs—are very highly connected and many
cliques are formed. This affects contagion dynamics.

V. SIMULATION RESULTS: CONTAGION DYNAMICS

This section provides results of simulations that are con-
ducted to capture the contagion dynamics based on the three
models described in Section III. In the first subsection, we de-
scribe simulation parameters. Subsequent subsections present
results that justify the contributions listed in Section I-B.

A. Test Conditions and Simulation Procedure

We introduce stochastic behavior to the models represented
by participation probability, pp, which is the probability that
an agent is participating (not absent) in the contagion process
at each time step. The behavior of a participating agent follows
the models as described. If an agent is not participating
(absent), then in the CD model and Chwe models, it is (tem-
porarily) removed from the social network at that time (but
returns for the next time if it is now participating). In the CKF
model, since a non-participating person’s Facebook wall still
exists, the structure of the bicliques in which he participates
remains intact, but the agent himself is not included among
the nodes in the CK set for that discrete time step.

The thresholds θ and participation probabilities pp used for
simulations are listed in Table II. For each pair of (θ, pp)
conditions, one simulation is executed. One simulation is com-
prised of 50 separate diffusion instances (i.e., runs). Diffusion
instances are run for 30 time steps each to capture the early
stages of diffusion. For each instance at each discrete time
t, Equation (1) or (2), depending on the model being run, is
computed for all nodes in state 0 to determine which nodes
transition to state 1. We use a high and a low threshold in
the simulations. The low threshold θl is equal to the average
degree in the network. This means that in order for vertices in
a CK set to transition from state 0 to 1, the size of the CK set
must be at least dave + 1. The high threshold θh is chosen as
the theoretical maximum threshold that will produce diffusion
in the CKF model (even when running contagion diffusion in
the other models), which is dmax.

TABLE II
SIMULATION MATRIX FOR EACH NETWORK. EACH VERTEX IS ASSIGNED

THE SAME θ AND pp IN A SIMULATION.

Thresholds θ Participation Probabilities pp
θl = dave, θh = dmax 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 1.0



The CD model requires some nodes to be in state 1 (“seeds”)
for the initiation of contagion. We use the seeding method
described in [5]: for each diffusion instance we pick one vertex
and assign it and all of its distance 1 neighbors the initial state
of 1, with all other vertices in state 0. In contrast, the common
knowledge models (Chwe and CKF) require no seed vertices
because individuals can coordinate to change state from 0 to 1
jointly, and hence all vertices are initially in state 0 at t = 0.

B. Comparison of Models on Facebook and ER Networks

Figure 3 contains contagion histories for ERFB and FB,
which nominally match in n and dave. Curves are the time-
wise averages over the 50 runs. The first two plots are for θ =
dave = 9, for the Chwe model and CKF model, respectively.
The latter two are plotted for θ = dmax = 21, for Chwe
and CKF, respectively. There is no contagion spreading in CD
model for these networks.

These plots contain the fraction of agents in state 1 as a
function of time. Each curve represents diffusion for different
participation probabilities pp. The colors corresponding to
these pp are: 1.0 (magenta), 0.4 (gray), 0.3 (purple), 0.2
(green), 0.1 (cyan), 0.05 (orange), and 0.01 (blue).

First, each of the four plots shows appreciable contagion
spread for at least some conditions (and in some cases, for
all conditions) in the ERFB network (solid curves). These
curves demonstrate that common knowledge models can
propagate contagion in hubless, unstructured networks,
which is Contribution 1. By inspection, since the same sets of
conditions are used with both the Chwe and CKF models, we
see immediately that the Chwe model propagates contagion
over a broader range of conditions, compared to the CKF
model, which is part of Contribution 2. For example, for
pp = 0.05 and θ = 9, the Chwe model (results in Figure 3a)
generates significant contagion, while the CKF model (results
in Figure 3b) produces less contagion.

In Figures 3a and 3c, the Chwe model produces about
the same dynamics on FB and ERFB networks; the solid
and corresponding dashed lines are close. That is, the Chwe
results are relatively insensitive to network class, which
is also part of Contribution 2. This is due to the growing
network that is assumed in the Chwe model, which generates
more cliques and more CK over time.

By contrast, the CKF model dynamics depend on local
structure, and hence Figure 3d shows a large difference be-
tween ER and ED graph classes (solid versus dashed curves).
The reason that contagion initiation is difficult in ERFB for
the CKF model is that there is one star subgraph with 22
agents: the one whose hub or center node has degree 21. Thus,
for contagion to initiate, all 22 agents must be participating
at the same time. This is a stringent requirement for most pp
values investigated.

C. Comparison of Models Across SF, ED, and ER Classes

The box plots in Figure 4 depict the cumulative fraction of
nodes in state 1 at t = 30 for each of the 50 instances for Chwe
and CKF models. The three graph classes are also provided.
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Fig. 3. Comparison of diffusion dynamics using the Chwe model in (a)
and (c), and the CKF model in (b) and (d), In each figure, results for
ERFB (solid curves) and FB (dashed curves) are given. Both networks
have approximately the same n and dave, but dmax in FB network is
almost an order of magnitude greater. In (a) and (b), the uniform threshold
is θ = dave = 9. Each curve corresponds to a different pp; see text. In (c)
and (d), θ = 21 = dmax. There is no contagion with the CD model.

The SF network is SF1, the ED network is FB, and the
ER network is NRV . Here, we use pp = 0.05, with uniform
thresholds θ = dave, where dave is based on the respective
network. We observe that the Chwe model is essentially
unaffected by network structure, whereas the CKF model
is far more dependent on the network structure, which is
part of Contribution 2. Also part of that contribution is that
results between the two models are in closest agreement
for SF networks. This is because SF networks have more
hub nodes of greater degree, which assist the CKF model in
initiating contagion at multiple locations in an SF network,
when thresholds are less than dmax. For greater pp, the CKF
model generates contagion in the NRV (right-most) network.
We do not obtain any diffusion with the CD model.

Fig. 4. Box plots illustrating the cumulative fraction of nodes in state 1 at
t = 30 for each of 50 instances for Chwe and CKF models. The participation
probability is pp = 0.05. SF1 (left), FB (center), and NRV (right)
networks are shown. The threshold is dave of the respective networks. There
is no CD diffusion for these conditions.



The qualitative results in Figure 4 hold over a broad range of
θ and pp. Differences between Chwe and CKF models increase
as pp decreases and threshold increases.

D. Parametric Study of Results For Different ER Networks

Here, we study the series of ten ER networks (ER1 to
ER10). For each of these networks, simulations are run where
threshold is systematically varied to identify the maximum
threshold that will propagate contagion. In all simulations, we
use pp = 1.0. Figure 5a shows the results for CD. Each curve
corresponds to results for a particular threshold. For example,
when pe = 0.004, about 15% of vertices, on average, change
to state 1 for θ = 3. For pe = 0.005, 99% of nodes, on average,
change to state 1 when θ = 3. Hence, we take (0.005, 3) as the
(pe, θ) pair that generates widespread diffusion (i.e, a cascade)
in these ER networks. Similar results for other (pe, θ) pairs
can be gleaned from this plot. This process is repeated for the
Chwe and CKF models, and results are plotted in Figure 5b.
This latter plot shows the maximum allowable threshold θall
that will produce ≥ 0.9 fraction of nodes in state 1 at t = 30.

Four curves for the Chwe model are provided, one for
each of G1 through G4, in Figure 5b, to account for the
increasing number of graph edges in time, and one curve for
each of CD and CKF. The maximum allowable threshold in
the Chwe model increases as additional edges are added to
the base (original) graph G1. For G1, if we ignore the fact
that agents learn their neighbors’ thresholds and states
at incrementally greater geodesic distance as a simulation
progresses, then the thresholds that the Chwe model can
sustain are comparable to those for CD (Contribution 3).
This plot clearly shows that the common knowledge models
can propagate contagions in ER (unstructured, hubless) net-
works at much greater thresholds than can CD across a wide
range of ER graphs (by varying pe). Furthermore, as stated
in Contribution 3, for CD and CKF models, θall changes
relatively little with increasing pe, but for the Chwe model,
θall can increase significantly with pe. See, for example, the
Chwe2 and Chwe3; i.e., G2 and G3, curves, respectively.
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Fig. 5. The effect of edge probability pe in generating full cascades in 104-
vertex ER graphs. Here, pe ranges from 0.001 to 0.01 in 0.001 increments.
(a) Results for CD only. Across a set of networks, when all vertices are
assigned the same threshold (see legend), the fraction of agents that reach
state 1 are shown. (b) Results for all three models: CD, CKF, Chwe. Data for
CD are derived from (a); data for CKF and Chwe are derived theoretically
from the maximum sizes of CK sets.

VI. CONCLUSIONS

This paper analyzes two contagion models that incorpo-
rate different common knowledge (CK) mechanisms, enabling

agents to coordinate their actions. Since classic diffusion (CD)
models demonstrate that complex contagions generally do
not propagate in unstructured networks that lack key players,
our main goal is to determine whether CK mechanisms will
propagate contagions in such networks. We find that CK
mechanisms can drive complex contagions in networks that
lack key players, but that the two CK models can produce
vastly different contagion dynamics on networks void of key
players. These data suggest that fostering CK among people
may be one way to produce or increase contagion.
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