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Abstract—Power load analysis is important for optimizing 

resource allocation, planning the production of electricity, and 

predicting power markets. Yet, it is challenging, since load data 

exhibit both periodic and stochastic features, and is affected by a 

multitude of factors including social, economic, political, and 

climatic factors, as well as industrial structure, living standards, 

and user behaviors. In this paper, we employ a multiscale 

framework to systematically analyze load data from two electric 

utilities in two cities of different size in China. The low frequency 

trend signals in both load data sets are quite irregular. The 

detrended data of the load time series are further denoised to 

remove high frequency noise. Fourier spectral analysis of the 

original and filtered data shows that the load time series has very 

strong spectral peaks corresponding to a period of one day. Using 

adaptive fractal analysis, which can best extract fractal behaviors 

from signals with strong oscillatory trends, we further show that 

load time series has long-range correlations. Amazingly, maxima 

of the temporal variations of the long-range correlations 

correspond well with temperature minima, highlighting that 

long-range correlations are stronger in winter than in summer. 
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I.  INTRODUCTION 

Comprising interwoven subsystems such as electric utilities, 
power grids, and their users, electrical systems are of 
fundamental importance to modern society. They are 
dissipative nonlinear dynamical systems with characteristics 
such as openness and nonuniformity, and may exhibit complex 
behaviors including bifurcations, catastrophe, and possibly 
chaos. Among the many fundamental issues associated with 
electrical systems are the characterization, modeling, and 
prediction of power load time series. Solutions to these issues 
are the basis for optimization of resource allocation, planning 
of the production of electricity, and prediction of the power 
markets. Analysis of power load time series is very challenging, 
however, since load time series is highly complicated, 
exhibiting both periodic and stochastic features. Such 
behaviors are generic of multiscale systems [1]. The 
complexity of load time series is further enhanced by social, 
economic, political, and climatic factors. Coupled with grid 
structure, industrial structure, living standards, and user 
behaviors, load time series varies from one region to another 
significantly. 

In recent years, there have been considerable efforts to 
model power load time series using chaos [2] and fractal 
theories [2–8]. There also have been efforts to study the power 
markets using multifractal theory [9, 10] and by explicitly 
considering temporal scales [11]. However, some of the 
researches published are not very satisfactory. For example, 

the problem is related to fractal analysis of load time series. A 

typical high frequency load time series contains periodic 
components, such as the daily (or diurnal) cycle. Fractal, by 
definition, is without any scale. How can periodicity and fractal 
coexist in load time series, and what effect will periodicity 
have on the estimation of fractal scaling exponents? The 
another question is also related to fractal characterization of 
load time series. In many fractal-based forecasting of load time 
series (see e.g., [3, 6, 8]), the value of the fractal scaling 
parameter (called the Hurst parameter) is given instead of 
estimated from measured data. This amounts to modeling load 
time series by purely fractal processes without incorporating 
any other features that are characteristic of load time series. 
The fundamental question is whether this is reasonable. 

To gain insights into the above fundamental questions, in 
this paper, we employ an adaptive multiscale filtering based 
approach to systematically analyze load time series from two 
electric utilities in two cities of different size in China. In 
particular, we will examine whether features such as 
periodicity, chaos, and fractals may coexist in load time series, 
and if yes, how one feature may affect characterization of other 
features. We will also examine factors that may cause temporal 
variations of those features. 

II. JOINT CHAOS AND FRACTAL ANALYSIS OF LOAD VARIATION 

USING MULTISCALE APPROACH 

A. Load time series data 

The load time series data analyzed here were obtained from 
two electric utilities in two different cities, Guilin and Leshan, 
of Guangxi Province, which is in southwest China. Guilin is a 
middle sized city, most well-known for tourism. Leshan is a 
smaller city. The data from Guilin covers a time span of more 
than 4 years, from January 1, 2005, to April 29, 2010. The data 
from Leshan covers a time span of two years, from January 1, 
2010, to December 31, 2011. The sampling time is 15 minutes 
for both data sets, and hence, there are 96 points on each day. 
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The raw load time series data are shown as the blue curves in 
Figs. 1 and 2. We observe that both are very irregular. 

B. Adaptive multiscale decomposition of the load variation 

To better understand what have contributed to the 
complexity of load time series, we employ a recently 
developed adaptive method, which is better for removing noise 
and determining trends than existing methods such as chaos-
based or wavelet-based approaches [12–14]. 

The method works as follows. It first partitions a time 
series into segments (or windows) of length 2 1w n   points, 

where neighboring segments overlap by 1n  points. While 

this has ensured symmetry, it also introduces a time scale of 

( 1) / 2 ( 1)w n    , where τ is the sampling time. For each 

segment, we fit a best polynomial of order M. Note that M = 0 
and 1 correspond to piece-wise constant and linear fitting, 
respectively. Denote the fitted polynomial for the i-th and 

(i+1)-th segments by ( ) ( 1)

1 2 1 2( ), ( ), , 1, , 2 1i iy l y l l l n    , 

respectively. Note the length of the last segment may be 
smaller than 2n+1. We define the fitting for the overlapped 
region as 

( ) ( ) ( 1)

1 2( ) ( ) ( ), 1,2, , 1c i iy l w y l n w y l n               (1) 

where 1
1 (1- )l

n
w  , 1

2
l

n
w   can be written as 

(1 / n)jd , 1,2j   , where 
jd  denotes the distances between 

the point and the centers of ( )iy and ( 1)iy  , respectively. This 

means the weights decrease linearly with the distance between 
the point and the center of the segment. Such a weighting 
ensures symmetry and effectively eliminates any jumps or 
discontinuities around the boundaries of neighboring segments. 
In fact, the scheme ensures that the fitting is continuous 
everywhere, is smooth at the non-boundary points, and has the 
right- and left-derivatives at the boundary. The method can 
effectively determine any kind of trend signal. Those for the 
load time series depicted as blue curves in Figs. 1(a) and 2(a) 
are shown there as red curves. They are determined with a 
window size of 699 sample points and a polynomial order of 2. 

For convenience of further analysis, we denote the raw load 

time series by ( )x t  , and the trend signals by trend(t). Then the 

detrended signals are  

( ) ( )  detrendedx x tren tdt                              (2) 

To better see how xdetrended looks like, we have shown in Figs. 
1(b) and 2(b) as blue curves a small segment of the detrended 
data. Both are oscillatory. However, their waveforms are not 
the same, suggesting that the signals from different electric 
utilities are very different. We also observe that the detrended 
signals are noisy. This high frequency noise can also be neatly 
removed by the adaptive filter employed here. This is achieved 
by using the filter with a small window size and determine 
another trend. With a window size of 9 sample points and a 
polynomial order of 2, we obtain the new trend signals shown 
as red in Figs. 1(b) and 2(b). This signal may be called 
detrended and denoised signal, i.e., band-passed signal. Note 
that the oscillatory feature of the load time series is better 

revealed by this band-pass signal. The difference between the 
blue and the red curves in Figs. 1(b) and 2(b) is the high 
frequency noise. This noise is smaller for Fig. 2(b), suggesting 
that high frequency noise in load time series from smaller 
electric utilities is weaker. This is consistent with the fact that 
load time series from smaller electric utilities has less 
uncertainty. 

We have computed the power-spectral density (PSD) for 
the raw, detrended, as well as band-pass signals. They are 
shown as blue, red, and green curves in Figs. 1(d) and 2(d), 
respectively. The most salient features of both figures are the 
sharp spectral peaks corresponding to 1 day and its harmonics. 
Note that most of the blue curves are covered by the red and 
the green colors, except at the frequency close to 0 Hz. They 
are contributed by the red trend signals shown in Figs. 1(a) and 
2(a). We also note that the difference between the red and the 
green curves in Fig. 1(d) is quite big, but negligible in Fig. 2(d). 
This is consistent with our earlier observation that high 

frequency noise is stronger in load time series from the Guilin. 

 

 
Figure 1:  (a) Raw load series data (blue) and the low frequency trend signal 

(red) from the city of Guilin; (b) a short segment of the detrended data (blue) 
and the denoised data (red); (c) 2-D phase diagrams corresponding to the 

data shown in (b); (d) Power spectral density (PSD) curves for the raw data 

(blue), detrended data (red), and also denoised data (green) 

  

 



 

C. Adaptive fractal analysis of the power load data 

we proceed to better characterize the random amplitude 
variations by random fractal theory [1]. One of the main 

models in random fractal theory is the 1 f   processes, where 

2   corresponds to the standard Brownian motion. 

Activities of many complex systems are characterized by such 

processes. A sub-class of such processes, denoted as 2 11 Hf  , 

is called processes with long-range correlations (or long 
memories) characterized by a Hurst parameter H. Depending 

on whether 0 1 2, 1 2, or 1 2 1H H H      [15], they are 

said to have antipersistent correlations, memoryless or only 
short-range correlations, or persistent long-range correlations. 
Prominent examples of such processes include vision [16], 
finance [17], DNA sequences [18–22], human cognition [23] 
and coordination [24], posture [25], cardiac dynamics [26–29], 
as well as the distribution of prime numbers [30], to name but a 
few. 

Before we proceed to estimate H (or equivalently α, since 
2 1H    from the power load data, we provide some 

mathematical details so that we can better understand the 

meaning of H. Let 
1 2{ , , , }nx x x  be a stationary stochastic 

process with mean x and autocorrelation function of the type, 

2 2( ) ,   Hr k k as k                             (3) 

where 0 < H < 1 is the Hurst parameter. When 1 2 1H  , 

( )
k
r k  , leading to the term long range correlation. 

1 2{ , , , }nx x x  is often called an increment (or noise) process. 

Its power spectral density (PSD) is 2 11 Hf  . Its integration, 

1

 ( ) ( ),  1,2, , ,
i

k

k

u i x x i n


                     (4) 

is called a random walk process having PSD 2 11 Hf  . Being 

1 f processes, they cannot be aptly modeled by Markov 

processes or ARIMA models [31], since the PSD for those 

processes are distinctly different from 1 f  . To adequately 

model 1 f  processes, fractional order processes have to be 

used. The most popular is the fractional Brownian motion 
model [15]. 

To deepen our understanding of the Hurst parameter, let us 

smooth 
1 2{ , , , }nx x x  using non-overlapping windows to yield 

a new time series, 

( )

1 ( ) , 1m

t tm m tmX x x m t                    (5) 

It can be proven that the variance of the new time series is 
given by [1, 32] 

( ) 2 2 2( )m H

tvar X m                         (6) 

where 
2  is the variance of original stochastic process 

1 2{ , , , }nx x x . Eq. (6) offers an excellent means of 

understanding H. For example, if 0.50H   , 100m   , 

then ( ) 2( ) 100mvar X  . When 0.75H  , in order to 

have ( ) 2( ) 100mvar X  , then we need 104m  , which is 

much larger than m = 100 for the case of 0.50H   . On the 

other hand, when 0.50H  , if we still want 
( ) 2( ) 100,mvar X  then 21.5,m  much smaller than 

100m   , the case of 0.50H  . An interesting lesson from 

such a simple discussion is that if a time series is short while its 
H is close to 1, then smoothing is not a viable option for 
reducing the variations there. 

Let us now proceed to estimate H. It is a highly nontrivial 
task, however, since our power load data contain a very strong 
oscillatory component — fractal signals do not possess any 
temporal or spatial scales, while oscillatory motions have a 
well-defined time scale, therefore, they are entirely different 
types of signals. More seriously, the oscillatory components in 
the load data prevent well established methods for estimating 
the Hurst parameter from being effective here. Fortunately, the 
adaptive algorithm already used earlier offers a way out. The 
method is called adaptive fractal analysis (AFA) [33–36]. It 
works as follows. For a window size w, we determine, for the 

random walk-like noise process ( )n i  a global 

trend ( ), 1,2, .v i i N  Here N is the length of the random 

walk process. The residual, ( ) ( ),n i v i characterizes 

fluctuations around the global trend, and its variance yields the 
Hurst parameter H [33], 

 
Figure 2: Similar to Fig. 1 except for the city of Leshan.  

 



(2) 2

1

( ) ( ( ) (
1

)[ )
N

H

i

F w n i v i w
N 

                  (7) 

Recall that the power load data are quite nonstationary. To 
examine whether the main fractal features may vary with time 
or not, it is important to first partition the load data into short 
segments, then estimate the Hurst parameter for each segment. 
We have chosen the segment length to be 96×30=2880 points, 
i.e., one month, since there are 96 sample points on each day. 
To improve the resolution, we have made the adjacent 
segments to overlap by half of the window length. An example 
of AFA, for an arbitrarily chosen window is shown in Fig. 3(a). 

The curve is linear up to 
72w   sample points, which is 

slightly longer than a day. The slope for the linear part of the 
curve yields the Hurst parameter H. Its variation with time is 
shown in Fig. 3(b) as the red curve. We observe that it has an 
oscillatory feature, with a period of about 1 year. This suggests 
that this variation may be correlated with the yearly 
temperature variation. To check this idea, we have also plotted 
in Fig. 3(b) a curve obtained by rescaling the local temperature 
at the city of Guilin by a factor of 0.01, then shifting upward by 
0.5, i.e., 

/100  0.5T T                              (8) 

The transformed temperature is plotted in the figure as the 

black curve. Amazingly, we observe that maxima of the ( )H t   

curve correspond to minima of the curve for the transformed 
temperature. In other words, the power load data have stronger 
long range correlations during winter times. 

 

Similar analysis has been carried out to the load data for the 
city of Leshan. The results are shown in Fig. 4. We observe 

very similar results; in particular, ( )H t  are larger during 

winter times, and therefore, again the load data have stronger 
long range correlations in winter. 

 

III. CONCLUSION AND DISCUSSION 

Analysis of power load variation is an important problem in 
Engineering, since it is the basis for the optimization of 
resource allocation, planning of the production of electricity, 
and prediction of power markets. Yet, it is challenging, as load 
variation is affected by many factors including social, 
economic, political, and climatic factors, as well as industrial 
structure, living standards, and user behaviors. Indeed, we have 
shown in this paper that load data contain a very irregular low 
frequency trend signal, which varies from one region to another, 
and thus must be affected a number of factors, besides 
temperature variation. Indeed, one can readily see that the 
expansion of a city must be also an important factor. Using an 
adaptive multiscale decomposition, we have further removed 
the high frequency noise from the detrended data of the power 
load time series. Detrending combined with denoising clearly 
extracts the major component of the power load variation, 
which has very strong spectral peaks corresponding to a period 
of one day and its harmonics, as well as highly varying 
amplitude. Further chaos analysis of this major component 
using scale-dependent Lyapunov exponent (SDLE), which has 
been shown to be able to unambiguously distinguish chaos 
from all known types of noise, clearly shows that power load 
variation is not characterized by a chaotic attractor. To better 
quantify the random amplitude variations, we then have used 
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Figure 4: (a) An example of log2 F(w) vs. log2 w for the load series of 

Leshan, illustrating AFA, and (b) the variation of H(t) vs. t (red). To 
correlate with temperature variation, a curve (in black) is also plotted based 

on the local temperature data (see text for details).  
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Figure 3: (a) An example of log2 F(w) vs. log2 w for the load series of 
Guilin, illustrating AFA, and (b) the variation of H(t) vs. t (red). To correlate 

with temperature variation, a curve (in black) is also plotted based on the 

local temperature data (see text for details).  

 



adaptive fractal analysis (AFA), which can best extract fractal 
behaviors from signals with strong oscillatory trends, and 
shown that load variation has longrange correlations. 
Amazingly, maxima of the temporal variation of the long-range 
correlations correspond well with temperature minima, 
suggesting that the long-range correlations in the load data is 
stronger in winter than in summer. 

Before ending, we make two comments. One is related to 
the load variation on large time scales. As the winters in the 
cities of Guilin and Leshan are quite mild, while summers are 
hot and humid, it is generally thought that the demand on 
electricity in those two cities will be greater in summer than in 
winter, as almost every household uses air-conditioning. This is 
not supported by measured load data. In fact, the load varies 
quite randomly for the city of Guilin, while it is larger in winter 
than in summer for the city of Leshan.  
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