
Interactive Exploration and Understanding of
Contagion Dynamics in Networked Populations

Sherif E. Abdelhamid, Chris J. Kuhlman, Madhav V. Marathe
Biocomplexity Institute and Deparment of Computer Science

Virginia Tech
Email: {sherief}, {ckuhlman}, {mmarathe}@vbi.vt.edu

S. S. Ravi
Department of Computer Science

University at Albany—SUNY
Email: sravi@albany.edu

Abstract—Modeling and simulation of contagion processes
on networked populations are used to understand protests,
social unrest, the spread of information, and virus and disease
epidemics, among other phenomena. Network structure and
attributes of vertices and edges are often useful in explaining
contagion spreading processes. However, particularly for larger
networks (e.g., those with hundreds of thousands or millions
of vertices), reasoning about and making sense of contagion
propagation results is difficult owing to the scale of these
simulations. We present a web application called NEMO for
assisting an analyst in understanding contagion processes and
in establishing causality. It has several features to query and
visualize networks, subnetworks, and their properties. In addition
to explaining NEMO’s features, we provide a real case study
of the spread of Ebola on a 4-million-vertex social network of
Liberia, Africa. We demonstrate how NEMO can be used to
explore interactively networks to understand the reasons for the
effectiveness of different interventions.

Keywords—interactive sense-making; knowledge discov-
ery; web application; modeling; contagion dynamics

I. INTRODUCTION

A. Background and Motivation

Computing the spread of contagions on populations is
useful for understanding how local behaviors give rise to
global or population-level outcomes. Examples include person-
to-person transmission of Ebola and how it produces large
numbers of outbreaks [1]. Other contagions, such as Twitter
tweet hashtag propagation in Spain in 2011, provide insights
into people’s reactions to government austerity measures [2].
Information diffusion and contagious influence can lead to
collective action [3] and social movements of the type well-
studied in sociology (e.g., [4]). Models of contagion dynamics
can also guide how to control undesirable contagions through
interventions [5].

Contagion studies are often performed on network represen-
tations of populations, where vertices and edges of a network
represent agents (e.g., people) and pairwise interactions, re-
spectively. Network structure is known to have a large effect on
the contagion dynamics [2]. Thus, many intervention methods
are based on network structure; e.g., removing vertices or
edges from a graph to inhibit contagion spreading [5], [6].
Many of these studies (e.g., [1], [5]) use agent-based modeling
(ABM) and simulation.

Despite the large number of ABM studies of contagion
dynamics on networks, we know of no tools available to
interactively probe results to assist in understanding computed
dynamics (e.g., why particular outcomes are generated). In
effect, our goal is to establish causality in the results.

There are several considerations for understanding conta-
gion propagation on social networks. Almost always, simula-
tions involve multiple runs (i.e., diffusion instances) to account
for stochasticity, for example. Parametric studies are also quite
common, in order to understand sensitivities of results to
various inputs, which may involve initial conditions, inter-
ventions, model parameters, and combinations thereof. These
realities make it imperative that explorations of simulation
data be interactive and iterative because one may have to
explore successively different “threads” in order to achieve
an understanding.

There are significant differences between our goals and
those for network visualization. Our focus here is contagion
dynamics on networks, and not the analysis of dynamic (e.g.,
time-varying) networks. Also, the majority of agent-based
contagion models are based on local behavior; i.e., an agent
changes state based on local interactions with its nearest neigh-
bors. Consequently, it is important to mine simulation results
for these local properties. Thus, large-scale network visual-
izations such as community structure are often insufficient to
understand dynamics; e.g., contagions can propagate between
communities. Furthermore, while it is possible to pre-compute
many network-based measures a priori, this is not the case for
contagion dynamics, where interactive probing may be driven
by initial conditions, model parameters, and other dynamical
considerations. As one example, if one “seeds” (i.e., initially
assigns contagion to) 20 agents of a one million agent system,
there are C(106, 20) � 1050 possible seed sets. Different
sets will produce different dynamics and require different
interpretations of simulation data. There is no possibility of
pre-computing all of these results.

In the past, we have produced special-purpose scripts to
post-process particular simulation results data, which is time-
consuming, not conducive to iterative exploration, and not
helpful for domain experts with no computing background.

In this work, we introduce and illustrate the use of a
web application called NEMO that enables domain experts
(e.g., network scientists, social scientists) to reason about the

results of contagion simulations on social networks in terms
of network properties. These properties can be (i) domain-
specific attributes, such as the age and gender of humans that
are represented by network vertices or weights of interactions
that are represented by edges; and (ii) network structure mea-
sures, such as degree and clustering coefficient distributions.
NEMO uses a combination of data mining, computational
analyses, and scientific data and network visualizations to
enable knowledge discovery about networks that helps in
understanding computed contagion dynamics.

B. Contributions

A summary of our main contributions follows.
1. NEMO functionality for understanding contagion dif-
fusion on large networked populations. NEMO is a web
application with the following features: uploading attributed
networks into the system; computing structural characteris-
tics and measures of networks; browsing networks and their
properties; querying networks to return sets of vertices and
edges, and other information; visualizing networks and their
attributes, computed data (e.g., measures), and data returned
from queries; and sharing of data across users. We describe
these features in more detail below. The system is designed
for use by researchers, domain scientists, policy planners, and
others with no computing expertise. It is an extensible system;
e.g., it can readily incorporate new network measures.
2. Description of NEMO in the context of contagion
dynamics. NEMO’s purpose is to enable one to understand
contagion diffusion on networks, through knowledge discovery
about network properties using scientific computation and vi-
sual analytics. It is a distinct web application that can be run in
isolation. Nonetheless, it provides a set of services that can be
profitably used in conjunction with other external systems. One
example is the EDISON web application [7] that computes
the diffusion of a contagion on networks using discrete-time
agent-based simulation. We discuss this interoperability in
Section IV.
3. Case study of the Ebola Outbreak in Liberia, Africa
in 2014. We provide a detailed case study to illustrate the
ability of NEMO to store and process large attributed graphs.
(The social contact network of Liberia has 4.08 million people
and 85 million daily interactions.) Results from multiple
simulations are presented, most of which evaluate different
interventions to halt the spread of Ebola. The purpose of
this case study is to understand why some interventions are
more effective than others. The goal is to establish causality
between intervention inputs and contagion spread sizes. We
describe how NEMO is used to iteratively and interactively
explore different network properties and attributes in order to
understand contagion spreading.

II. RELATED WORK

Gephi [8] is an open source tool for visualizing net-
works and properties of networks. We use Gephi as a
service within NEMO to render graphs and provide in-
formation about them. However, Gephi does not have the

capabilities of NEMO for understanding contagion dy-
namics. There are many other graph visualization tools;
see, for example, http://www.kdnuggets.com/2015/06/top-30-
social-network-analysis-visualization-tools.html.

SocialNetSense [9] is designed to help analysts understand
domain-based attributes and structural parameters of networks.
Their work appears to be confined to networks with perhaps
a few thousand vertices, whereas we seek to understand
dynamics on networks that are 2 to 3 orders of magnitude
greater in size. Other software uses machine learning [10] and
logic programming [11] to understand graphs.

Network Workbench (NWB) (e.g., [12]) is a tool for visual-
izing networks for a wide range of domains. It can investigate
dynamics to some extent, but the tool is not used to explore and
query networks, and to visualize networks and their properties,
in order to explain contagion spreading on networks.

Contagion in networks is visualized in [13]. This work
differs greatly from ours in that their definition of contagion
is the process of removing vertices from graphs, not the
spread of contagions like information on a network. Also,
they primarily study small financial networks (roughly 40
vertices). Furthermore, they are not concerned with explaining
dynamics, only showing the dynamics (in terms of how a graph
is reduced in size—for their type of contagion).

Analysis tools to understand brain network data are called
for in [14], where some of the stated needs are not only
structural, but also related to brain functioning (i.e., dynamics).

The SNAP system [15] provides a number of graph mea-
sures, but not within a system that performs agent-based
simulation.

Most tools (beyond those identified here) appear to be
focused on smaller graphs.

III. DISCRETE DYNAMICAL SYSTEMS
MODEL

We provide an overview of discrete dynamical systems,
which is our framework for computing contagion dynamics.
We then present a concrete example, which illustrates some as-
pects of agent-based simulation. The final subsection expands
on the first two, to motivate the need for a tool like NEMO
to understand contagion dynamics.

A. Formulation

Our goal is to provide intuition about the discrete dynamical
systems that we use for simulation. More detailed treatments
are found in [16], [17]. A graph dynamical system (GDS)
S is a 4-tuple S(G(V,E),K, F,W), where G(V,E) is the
social network of the population, with vertex set V and edge
set E; let n = |V |. Agents and interactions are represented
by, respectively, vertices and edges. Each vertex i ∈ V is
assigned precisely one value from the set of vertex states
K, at each time t of a simulation. In the example below, we
will take K = {0, 1}, where 0 (resp., 1) means that a vertex
is not (resp., is) activated. The state xi of vertex i at t is
denoted xi(t). Let F be the set of all vertex functions or
local transition functions fi, for each i ∈ V . That is, the

next state of i is computed using fi ∈ F . Specifically, given
the states of all vertices at t, the next state of i is given by
xi(t+1) = fi(x[i](t)), where x[i](t) is the sequence of states
of i and its (distance-1) neighbors at t. For example, in the 6-
vertex network in Figure 1, if i = 5, then vertices 4 and 6 are
its distance-1 neighbors and x[5](t) = (x4(t), x5(t), x6(t));
i.e., it is the sequence of states of vertices 4, 5, and 6 at t.
Finally, W is the update scheme; it describes the order in
which the vertex functions fi, 1 ≤ i ≤ n are executed. Here,
we use a synchronous update method, where all fi execute
simultaneously at each time step t. Such a GDS is often called
a synchronous dynamical system (SyDS) [17].

B. Illustration of Contagion Dynamics

We now provide an example, illustrated in Figure 1. On the
left, the state transition diagram for a vertex is shown. The
vertex function is a threshold function, where each vertex j
is assigned a threshold θj . In words, fj at time t is defined as
follows: (i) if j is in state 0, and at least θj of its neighbors are
in state 1, then j transitions from state 0 to 1 (i.e., xj(t+1) =
1); otherwise, xj(t + 1) = 0; and (ii) if j is in state 1, then
its next state is 1. In this example, all vertices have θ = 2,
except for vertex 5, where θ5 = 3.

At t = 0, we specify that vertices 2 and 6 (seed nodes) are
in state 1, and the system state x = (x1, x2, x3, x4, x5, x6) =
(0, 1, 0, 0, 0, 1). At t = 1, vertex 4 has two neighbors in
state 1, namely 2 and 6, so it transitions to 1; no other vertex
transitions. At t = 2, vertex 1 has two neighbors in state 1 (2
and 4), and hence transitions to state 1. Note that vertex 5 does
not transition because its threshold is 3; it can never transition
from 0 to 1 because it does not have 3 neighbors. Finally, at
t = 3, vertex 3 changes state. This results in a fixed point;
i.e., no more vertex state transitions can occur.

time	
 𝑡=0	

6	

4	
 3	

5	

2	
 1	

(0,1,0,0,0,1)	

𝑡=1	

6	

4	
 3	

5	

2	
 1	

(0,1,0,1,0,1)	

𝑡=2	

6	

4	
 3	

5	

2	
 1	

(1,1,0,1,0,1)	

𝑡=3	

6	

4	
 3	

5	

2	
 1	

(1,1,1,1,0,1)	

0	
 1	

vertex state
transition

Fig. 1. An example GDS. Left: the single vertex state transition 0 → 1.
Right: the 6-vertex graph has initially two vertices (2 and 6) in state 1 at
time t = 0. These are seed nodes. Each vertex has threshold θ = 2, except
vertex 5, for which θ5 = 3. The system state x = (x1, x2, x3, x4, x5, x6) at
times t = 0 through 3 is given. At the end of t = 3, the system has reached
a fixed point; i.e., no vertex can change state.

C. Extensions of the Basic GDS Formulation

The dynamics of the intentionally simple example of Sec-
tion III-B belie the power of GDS, which is Turing equivalent
for appropriate complexity classes [18]. There are many direc-
tions of increased sophistication of a GDS from the example
above; we cite four. First, networks can be any size (e.g.,
any number of vertices), often reaching tens of thousands or
millions of vertices. Second, the vertex functions can be much

more sophisticated, such as one for the spread of Ebola [19],
which has six vertex states, eight different state transitions,
and requires 11 properties for each agent and one property
for each edge. Third, the interactions can be complex. For
example, there may be multiple edges between any pair of
vertices in Figure 1, each representing a different mechanism
such as face-to-face, social media, email, and cell phone
interactions. Fourth, there may be different types of agents in
the system, each with a different type of vertex function. These
complications further motivate the need for tools to understand
contagion simulation results.

IV. ILLUSTRATIVE LARGER SYSTEM
OVERVIEW

Our focus of this paper is on NEMO and its capabilities
from a user’s perspective. However, it is useful to put NEMO
in context to see its utility in a larger scope. This description
illustrates, in a concrete way, the value of NEMO.

Figure 2 provides an over-arching view of our system for
computational modeling and agent-based simulation (ABS)
of contagion processes on network representations of popula-
tions, as overviewed in Section III. We refer to this system as
EDISON (shown in the figure as one of the components), and
has been described in [7]. EDISON is a web application and is
intended for computing novices and experts alike. Illustrative
applications include the spread of influenza, and of social
contagions such as information, rumors, and addiction.

Middleware	

NEMO	

InterSim	

EDISON	

MARS	

Web	
 App	
 for	

Contagion	
 Studies	

Plots,	
 Visualiza9ons	
 &	

Discovery	

Services	
 &	
 Data	

Simula9on	
 &	

Contagion	
 Dynamics	

Fig. 2. Overarching view of a software capability of which NEMO is a
component. These components are distinct, and several can be integrated with
systems other than the EDISON system, identified here. Our focus in this
paper is the highlighted NEMO system for interactive knowledge discovery
and visualization.

Each of the four components is distinct, and can interoperate
with other software systems. This is an example of our
approach to design and implement pluggable, loosely-coupled
components that can operate within service oriented architec-
tures (SOAs). The middleware is key for communications,
passing metadata, data, authentication, and service requests,
including quality of service (QoS) specifications.

InterSim is the agent-based simulation framework that
performs the contagion dynamics computations; an earlier
version is described in [20]. MARS [21] is a set of services

that manipulates networks and their attributes, and computes
structural properties of networks, among other things. NEMO
has features that are completely distinct from those of the other
components, although it does use the MARS query service,
which has been enhanced for the needs of NEMO.

V. NEMO OVERVIEW

Figure 3 summarizes features available to users through
NEMO’s user interface. A user can upload networks into the
system, and specify structural parameters (e.g., number of con-
nected components) and distributions (e.g., degree distribution)
to be computed. Users can browse networks, including their
attributes. Attributes may be domain-based, such as the ages of
network vertices that represent people and duration of contact
on an edge between two vertices, or structural parameters
such as k-cores or betweenness centrality. Users can perform
queries on these networks, returning sets of vertices or edges.
These data may be plotted. Other types of plots include
network visualizations and data associated with them.

Data can be shared among users. For example, a network
uploaded by one user can be used by another; e.g., to generate
plots of properties. These users may be remote collaborators.

Fig. 3. User functionality through NEMO.

VI. CASE STUDY: EBOLA OUTBREAK IN LIBERIA, AFRICA
IN 2014

We now describe an actual case study based on an ABS
of the Ebola outbreak in Liberia, Africa in 2014. Different
interventions are evaluated by determining their effects on
computed outbreak sizes. The main goal of this description
is to demonstrate how NEMO can be used to understand con-
tagion dynamics in terms of network structure and attributes.
We first discuss the social contact network of Liberia. Then
we summarize the simulations and results. Finally, we describe
the use of NEMO.

A. Social Contact Network of Liberia

For ABS of the Ebola outbreak, a social contact network
is required. The social network of Liberia consists of human
agents or vertices, and edges between pairs of humans that

indicate contact in the sense of being co-located for a pre-
scribed time interval. Each person is endowed with traits such
as age, gender, home location, size and composition of the
person’s household, and a set of daily activities with locations
and start and end times. The contact network represents human
interactions in a single, normal day. In this network, activities
are primarily home, work, and school, but any number and
type of activities can be included. Each edge is labeled with the
duration of contact based on start and end times, the activities
of the two people interacting, and the IDs of these people.
The social network that we use is produced from a baseline
population consisting of 4.08M attributed people and 84.8M
labeled edges. Attributed vertices and edges of the network
are entered into MARS through the NEMO web portal.

B. Agent-Based Simulations and Results

Simulations were completed with EDISON [7]. The social
contact network described above was used in all simulations.
The state transmission model describing the progression of ill-
ness in a human is provided in Figure 4, and comes from [19].
A healthy person that has never contracted Ebola is suscep-
tible. Exposed means that the person has contracted Ebola,
but is not yet contagious. The infectious state means that the
person is out interacting with the population, performing her
normal activities, but is infectious. Hospitalized individuals
and even the deceased (in the funeral state) remain infectious
but do not have activities. Removed means either recovered
(with subsequent immunity) or deceased and taken out of the
population. Note that Figure 4 reflects cultural aspects of select
African countries because of hospital- and funeral-related
customs [19]. Equations for disease transmission are omitted
due to their complexity, but follow the model described in [19].

S	
 E	
 I	
 H	
 F	
 R	

Fig. 4. Finite state machine showing the permissible states for each human
agent and its state transitions for Ebola [19]. States are susceptible (S),
exposed (E), infectious (I), hospitalized (H), in funeral state after death (F),
and removed or recovered (R).

Simulations were performed by seeding five randomly cho-
sen people per run and computing transmission among agents
per day, for 400 days. Final fractions of infected people over
400 simulated days are plotted in Figure 5 for various condi-
tions. Each bar represents the average of 20 individual sim-
ulation instances. The base results correspond to about 9500
infections over this period with no interventions. Additional
simulations were performed to investigate interventions. These
consist of vaccinating people with 70% efficacy, thus reducing
the baseline disease transmissibility τ to τ ′ for vaccinated
people, according to τ ′ = (1 − 0.7)τ = 0.3τ . Vaccinated
people are correspondingly less likely to be infected. Different
simulations were used to vaccinate people in 10-year intervals,
as depicted in Figure 5. The results show that vaccinating those

0	

0.001	

0.002	

0.003	

Ba
se
	

0-­‐
10
	

11
-­‐2
0	

21
-­‐3
0	

31
-­‐4
0	

41
-­‐5
0	

51
-­‐6
0	

61
-­‐7
0	

71
-­‐8
0	

81
-­‐9
0	
 Fr
ac
	
 o
f	
 P

op
ul
a,

on
	

Age	
 Range	
 for	
 Vaccina,on	

Fig. 5. Agent-based simulation results for the spread of Ebola in Liberia,
Africa. Fraction of total population infected after 400 days, averaged over 20
contagion instances, for the baseline case (of no intervention) and the nine
interventions; from [7].

in the 31-40 year age range was most effective. The purpose
of NEMO, in this case, is to aid an analyst in understanding
why some interventions are more effective than others, which
is where our focus now turns.

C. Understanding the Effects of Interventions Using NEMO

Figure 6 conveys the operations of NEMO for the purpose
of understanding why some interventions are more effective
than others in Figure 5. The analyses described here represent
one session with NEMO; i.e., a user logs into the system and
completes all analyses in one sitting (although these operations
may be broken up among multiple sessions).

First, it is reasonable to suspect that there are simply more
people in the network in the 31-40 age range, so vaccinating
these people produces the greatest vaccine coverage. To test
this hypothesis, the user constructs a workflow within NEMO
using point-and-click operations. The workflow counts the
number of social network vertices that are in each age range,
and constructs and displays the bar chart shown by workflow 1
(the orange circle with “1” inside), which contains the green
bars. From this plot, we see that approximately 0.5 million
people are in the 31-40 age range, but that other groups have
far more people.

These data do not provide an explanation, so the analyst
constructs a second workflow, denoted by the orange circle
with the “2” inside, in Figure 6. This workflow generates the
accompanying plot and is motivated by the idea that people
in the 31-40 age range may have more total interactions than
those in other age ranges. But the plot of sum-of-degrees by
age bin shows that, again, this is not the case. This age group
has slightly more than 10 million interactions, but there are
two other groups with more contacts.

Workflow 3 is used to determine whether the average
number of interactions per person in each age range explains
the effects of interventions. In this case, the 31-40 and 41-
50 age ranges have the greatest average degrees, but only
slightly more than the bins 21-30 and 51-60. These four bins
represent the most effective age ranges for interventions in
Figure 5. While informative, the average degrees among these
four bins do not explain the differences in the efficacies of the
interventions.

Workflows 4 and 5 are used to compute k-shell distributions,
and for each k-shell, the number of vertices in the shell for
the different age bins is computed. A k-core is a subgraph of
a graph in which all vertices have degree at least k. A k-shell
is the set of vertices in the k-core subgraph, and not in the
(k+1)-core subgraph. For each age bin, the more vertices that
are in greater shells, the more well-connected those vertices
are to other high-degree vertices. Workflow 4 produces the
counts of network vertices in each k-shell, by age bin, for the
five age groups that are least effective in stopping the outbreak
when vaccinated, and generates the plot shown. Workflow 5
generates analogous data for the four age groups that are most
effective to vaccinate and the plot generated in this workflow
is also shown. From this latter plot, we see that for some of
the greatest shells, around k = 30 (see the red arrow), the
ordering by age bin for the number of vertices in shells 30
through 35, exactly matches the ranking of the efficacy of
vaccination. The largest shell in the Liberia network is 37, so
these shells are large. This suggests that the vertices in the
social network with high degree that are most well-connected
to other high degree vertices, are most effective in reducing
the Ebola spread.

After workflow 5, the analyst terminates her session. Note
that for all plots, the user can customize the plotted ranges
on the x- and y-axes, the axis labels and all font sizes, and
the colors and types of lines for each data line. The goal is
to enable a user to generate publication-quality graphics while
interactively exploring the data.

This case study does not prove that vaccinating high k-
shell vertices are most effective in thwarting Ebola outbreaks.
Typically, the best one can do is use inductive reasoning: given
the evidence (i.e., simulation results), identify likely causes
that produce the result. Additional simulations, perhaps on
other networks, could be used to test this hypothesis.

This study also illustrates that one must look in detail at
data. High-level graphics, such as a network visualization
with vertices colored by community, does not yield useful
information, although identifying the vertices in communities
that are most connected to other communities could in some
cases. Social networks with high-degree hub nodes often pro-
duce communities of very large size, which are not helpful in
understanding how contagion is transmitted. Other possibilities
are computing the durations of contact for the vertices of
different age bins (not shown), since the duration of contact
affects the probability of disease transmission.

VII. CONCLUSIONS AND FUTURE WORK

We have described a new web application called NEMO
for interactive and iterative knowledge discovery. In particular,
the primary purpose of NEMO is to assist domain experts and
analysts in understanding the causes of observed contagion
dynamics phenomena. Iterative and interactive use of NEMO
facilitates data exploration. The system is designed for exten-
sibility, and new features are under development.
Acknowledgments. We thank the anonymous reviewers for
their useful comments and suggestions. We thank our external

Number of
people in
each age

range

Number of edges
formed by people in

each age bin

Average degree
of a person in
each age bin

k-shell distributions
for the five age
groups that are
least effective

k-shell
distributions

for the four age
groups that are
most effective

2

3

4

5

1

Workflow
Designer

Sum of Degrees

Average of Degrees

Fig. 6. Iterative and interactive use of NEMO to generate different plots on-the-fly through the web console, in order to understand the effects of interventions
on simulated Ebola outbreaks in Liberia, Africa. Given the simulation results in Figure 5, the goal is to understand the reasons for the effectiveness of different
interventions. The data here were generated during one user session with NEMO. Each plot is the result of a different workflow that is specified within NEMO
by a user. Between workflows, the human-in-the-loop evaluates the results and decides on the next analysis (workflow) to be completed, if any. Here, the
results of five analyses (workflows labeled 1 to 5) are provided. The utility of these results is described in the text.

collaborators and members of the Network Dynamics and
Simulation Science Laboratory (NDSSL). This work was par-
tially supported by DTRA Grant HDTRA1-11-1-0016, DTRA
CNIMS Contract HDTRA1-11-D-0016-0001, and NSF NetSE
Grant CNS-1011769.

REFERENCES

[1] C. Siettos, C. Anastassopoulou et al., “Modeling the 2014 ebola virus
epidemic—agent-based simulations, temporal analysis and future pre-
dictions for liberia and sierra leone,” PLOS Currents Outbreaks, 2015.

[2] S. Gonzalez-Bailon, J. Borge-Holthoefer, A. Rivero, and Y. Moreno,
“The dynamics of protest recruitment through an online network,”
Nature Scientific Reports, pp. 1–7, 2011.

[3] S. Lohmann, “Collective action cascades: An informational rationale for
the power in numbers,” Journal of Economic Surveys, 2000.

[4] M. Diani, “Introduction: Social Movements, Contentious Actions, and
Social Networks: ‘From Metaphor to Substance’?” in Comparative
Politics: Social Movements and Networks. Oxford, 2003, pp. 1–20.

[5] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos,
“Gelling, and Melting, Large Graphs by Edge Manipulation,” in Proc.
CIKM, 2012, pp. 245–254.

[6] R. Albert, H. Jeong, and A. Barabasi, “Error and attack tolerance of
complex networks,” Nature, 2000.

[7] S. E. M. Abdelhamid, C. J. Kuhlman, G. Korkmaz, M. V. Marathe, and
S. Ravi, “Edison: a web application for computational health informatics
at scale,” in ACM-BCB, 2015, pp. 413–422.

[8] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” 2009.

[9] L. Gou, X. Zhang, A. Luo, and P. F. Anderson, “Socialnetsense:
Supporting sensemaking of social and structural features in networks
with interactive visualization,” in VAST, 2012, pp. 133–142.

[10] D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos, “Apolo: Making
sense of large network data by combining rich user interaction and
machine learning,” in SIGCHI, 2011, pp. 167–176.

[11] P. Shakarian, G. I. Simari, and D. Callahan, “Reasoning about complex
networks: A logic programming approach,” in TPLP, vol. 13, 2013.

[12] V. Colizza, R. Pastor-Satorras, and A. Vespignani, “Reaction–diffusion
processes and metapopulation models in heterogeneous networks,” Na-
ture Physics, vol. 3, no. 4, pp. 276–282, 2007.

[13] T. von Landesberger, S. Diel, S. Bremm, and D. W. Fellner, “Visual
analysis of contagion in networks,” Information Visualization, 2013.

[14] O. Sorns, “Making sense of brain network data,” Nature Methods, 2013.
[15] J. Leskovec, “SNAP: Stanford network analysis project,”

http://snap.stanford.edu/, 2016.
[16] H. Mortveit and C. Reidys, An introduction to sequential dynamical

systems. Springer Science & Business Media, 2007.
[17] D. Rosenkrantz, M. Marathe, H. H. III, S. S. Ravi, and R. Stearns,

“Analysis problems for graphical dynamical systems: A unified approach
through graph predicates,” in AAMAS, 2015.

[18] C. Barrett, H. B. Hunt III et al., “Complexity of reachability problems
for finite discrete dynamical systems,” J. of Comp. and Syst. Sci., vol. 72,
pp. 1317–1345, 2006.

[19] J. Legrand, R. F. Grais, P. Y. Boelle, A. J. Valleron, and A. Flahault,
“Understanding the dynamics of ebola epidemics,” Epidemiology and
Infection, vol. 135, 2007.

[20] C. J. Kuhlman, V. S. A. Kumar et al., “A general-purpose graph
dynamical system modeling framework,” in WSC, 2011.

[21] S. Abdelhamid, C. J. Kuhlman, M. V. Marathe, and S. S. Ravi, “Network
services and their compositions for network science applications,” in
ICCS, 2016.

