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Abstract—Online information has become important data
source to analyze the public opinion and behavior, which is
significant for social management and business decision. Web
crawler systems target at automatically download and parse
web pages to extract expected online information. However,
as the rapid increasing of web pages and the heterogeneous
page structures, the performance and the rules of parsing have
become two serious challenges to web crawler systems. In this
paper, we propose a distributed and generic web crawler system
(DGWC), in which spiders are scheduled to parallel access and
parse web pages to improve performance, utilized a shared and
memory based database. Furthermore, we package the spider
program and the dependencies in a container called Docker to
make the system easily horizontal scaling. Last but not the least,
a statistics-based approach is proposed to extract the main text
using supervised-learning classifier instead of parsing the page
structures. Experimental results on real-world data validate
the efficiency and effectiveness of DGWC.
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I. INTRODUCTION

Internet currently has become an important information
carrier, especially with the rapid growth of Web 2.0 and
social media. Online data therefore turns to be one of the
most important source to analyze the public opinion and
behavior, which is significant for social management and
business decision [1]. For example, companies expect to
collect and summarize the comments from customers to
predict the market prospect, and/or analyze the competitors
information to improve the targeted marketing strategies.
However, as the enormous amount of web sites, it is daunting
or even impossible to gather the online data manually.

Web crawler is generally the most effectively approach
to collect online data from web pages automatically. As is
well known, a web page is constructed by two types of
contents, i.e. meaningful information (maybe texts or multi-
media elements) and links to other web pages. The crawler
extracts expected data from the meaningful information, and
travels to others web pages according to the links to extract
more information. It theoretically can cover all web pages in
Internet, however, in practice only a limited subset of web
sites is enough, and the crawler is usually restricted to access
some targeted web sites. Although various web crawlers are
proposed for online information extraction [2][3][4], there
still exists some problems: i) The number of targeted web
pages is usually very large despite it is limited, thus the

efficiency of web crawlers is so important that few current
open source crawlers can completely meet the requirements;
ii) Information extraction needs to parse the structure of web
pages, while the web pages are heterogeneous and analyze
them individually is time consuming and even impossible.

To address these problems, a Distributed and Generic
Web Clawer (DGWC for short) is proposed in this paper for
web information extraction. First, to improve the efficiency
of web crawler, we design a distributed crawler system
based on Scrapy1, a widely used crawler implemented by
Python. Furthermore, we also consider the ability of hori-
zontal scale-up, and employ Docker as the containers to
encapsulate the crawlers, thus they can be easily developed
to new servers with little configuration. For heterogeneous
web pages parsing, we note that some meta data, such as title
and time, can be extracted by special HTML tags or regular
expression. Therefore, the only problem is how to extract
the main text in web pages, thus we proposed a statistics-
based approach which employs supervised-learning classifier
to identify the main text line, and then uses sliding window
and score function to extract main texts from web pages.

The rest of this paper is organized as follows: Section II
introduces the framework of DGWC. Section III describes
the algorithmic details of main texts extraction. The experi-
mental results are presented in Section IV. We also give the
related work in Section V and finally conclude this paper in
Section VI.

II. SYSTEM OVERVIEW

DGWC is a distributed web crawler based on Scrapy,
however, many mechanisms are redesigned to meet the
requirements of distributed job scheduling, horizontal scale-
up and management. In this section, we briefly introduce the
framework of DGWC.

A. Job scheduling of DGWC

For distributed systems, job scheduling usually is one the
most important issues to determine the success or failure
of the system. In DGWC, a job means a URL that the
corresponding web page must be downloaded and parsed. In
order to parallel run the jobs, the links that parsed out from
one web page by a spider should be shared with other spiders
(In this paper, the word “spider” means the module that

1http://scrapy.org/
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Figure 1: Job scheduling in DGWC

parsing web pages in crawler). Scrapy contains a scheduler
yet no mechanism is provided for links sharing. In DGWC,
we redesign the scheduler and get the links from a shared
storage instead of spider.

As shown in Fig. 1, we take Redis, a memory based
database, as the shared storage of URLs to obtain higher
performance. The job flow of DGWC is as follows: The
Scrapy Engine first sends the signal request scheduled to a
spider to start the job (Step 1); Then the Spider pops a URL
from URL queue in Redis, which will be encapsulated as a
Request and submitted to the Scheduler (Step 2,3); After the
Scheduler receives the Request, it pushes this Request into
the tail of the request queue in Redis, upon sends a signal
request scheduled to Scrapy Engine (Step 4,5); To get the
content of web pages, the Scheduler pops a Request from
the head of request queue, and sends it to the Downloader
(Step 6,7); The Downloader accesses the web page in terms
of the Request to get the Response, and then submits the
Response to the corresponding Spider (Step 8); The Spider
parse the HTML content in the Response to extract expected
items, and send the new extracted URLs to Redispipeline
(Step 9,10); The Redispipeline at last push these new URLs
into the URL queue in Redis.

Note that in Redis we can use different keys to separate
different queues, so that the multiple jobs will not be
confused by using unique key among each other.

B. Scalability and management of DGWC

To solve the problem of the large amount of web pages,
it is better for the crawler system to parallel access the
different web pages. With the shared storage, i.e. Redis,
spiders could parallel access it to get jobs. However, if new
servers are added to scale up the system, the mass and trivial
configurations are time consuming and daunting. In DGWC,
we employ Docker, a LXC (Linux Container) based ap-
plication container engine, to package the crawler program
and its dependencies in a virtual container. Therefore the
crawler and dependencies can be easily copy to any new
Linux servers as a whole, thus get the satisfactory capability
of horizontal scale-up.
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Figure 2: Horizontal scale-up and management for DGWC

As shown in Fig. 2, we leave Redis out of container
as a global storage to assign jobs, and package the other
modules of a crawler into Docker, including Scheduler,
Scrapy Engine, Spider, Downloader and Redispipeline. To
centralized manage the Dockers in all the servers, we
implement Maestro as a controller to add, delete, start and
terminate the Dockers. In addition, we use Logstash to
gather the running logs and visualized them by Kibana.

The data extracted from web pages by the crawler could
be stored in various storages, including HDFS, MongoDB,
MySQL and so on. However, the final selection of storage
must be carefully considered and make sure it is suitable for
the feature of extracted data.

III. INFORMATION EXTRACTION

The web pages got by the Downloader module represent
as a set of HTML tags, meaningful information and links to
other web pages. The spider should parse the web pages to
extract expected items, such as title, published time and other
information. Furthermore, the URL of links should also be
identified to get other web pages. Generally, we construct the
web page as a DOM tree and employ DOM based tools, e.g.
BeautifulSoup to parse out expected items. However,
the structures of web pages are quite different from each
other so that it is impossible to parse the web pages using
unified program. Fortunately, the items such as title, time and
URLs can be identified by special HTML tags (e.g. <title>
for title, or <a href> for URL) or regular expressions,
therefore the left problem is that how to extract other
expected information. Due to the most scenario that usually
only the main texts of web pages are needed, we propose an
algorithm focus on this simplified problem, which has been
implemented in DGWC for main texts extraction.

A. The Overview of the Main Text Extraction Algorithm

To extraction the main texts, we take lines in HTML
source as basic units. The line contained in main text is
called topical line in this paper, thus the main tasks of
the algorithm are 1) to identify potential topical lines in
original HTML source; 2) to segment web page into several
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Figure 3: Overview of the main text extraction algorithm

potential topical blocks. Fig. 3 shows an overview of our
algorithm, which involves two separate stages: supervised
learning classifier construction from training pages and main
text extraction by the classifier on target pages. In stage 1,
the original HTML source needs necessary preprocessing
and the text line features are extracted to represent every
text line; then, a supervised learning is practiced to train the
classifier using training pages. In stage 2, necessary HTML
source preprocessing and text line features extraction are the
same as in stage 1, after that, each text line is determined
whether it belongs to the main text by the classifier; next, a
sliding window is applied to segment web page into several
potential topical blocks; finally, a simple election algorithm
is utilized to select important blocks which will be united
as main text.

B. Data Preprocessing and Features Extraction

In todays web pages, the growth in presentation elements
such as tokens, phrases, and named-entities coming from
advertising sections and footnotes, are useless yet increases
difficulty in main texts extraction.To improve the quality
of the extraction results, those presentation elements need
filtering according to the following criteria:

1) Get the string between <BODY> tags;
2) Delete all blank lines and redundant white-spaces;
3) Delete HTML tags listed in Tab. I, the contents

between which are always noisy information. Note
that the tag <a> is improtant for links identifying
yet useless for main texts extraction.

After the above three steps, we obtain the web page HTML
source with little noisy information.

Typically, the main text usually occupies the center of the
web page, and this part of code has intensive text with few
links or images. With previous tasks, we split the extracted
text into a string sequence of N lines, denoted by an ordered
set L = {P1,P2, · · · ,PN}, where Pi is the ith text line in
web page. Therefore, some spatial and content features in a
text line are useful to differentiate text line importance. As
the spatial features are difficult to capture from the HTML
source, in the paper, we only consider the edit distance
between the line text and the documents <BODY> tag,
namely, the index in set . The content features in a text
line could reflect the importance of this text line. In this

Table I: Some useless tags in HTML source files

Useless HTML tags
<a>, <script>, <noscript>, <style>, <meta>, <!—->, <param>,
<button>, <select>, <optgroup>, <option>, <label>, <textarea>,
<fieldset>, <legend, <input>, <image>, <map>, <area>, <form>,
<iframe>, <embed>, <object>

paper, the selected features are the length of the text line
(measured in HTML bytes), the length of the output text line
(measured in HTML bytes), the density of it, the number of
links and the number of images. We represent the features of
a text line as {Index, TextLength, OutputTextLength, Density,
LinkNum, ImgNum}. For example, if we get a text line which
leaves 287 lines from the <BODY> tag, and has 198 bytes
totally and 170 bytes outputted, and has no link and image,
could be represented as {287, 198, 170, 0.86, 0, 0}, where
the density 0.86 is calculated by 170/198, i.e., the ratio of
OutputTextLength and TextLength. Note that if the training
data is composed of a number of HTML source files which
are from different web sites, the spatial feature such as Index
needs to be measured using the relative distance (normalized
distance), i.e., i/N; where i is the original Index value and N
is the total number of text lines in the document. The other
features can be normalized in a similar way.

Although a classifier could be trained by the normalized
features above. However, almost all features are numerical,
and modeling the continuous feature directly is not suitable
for main text extraction. The reason is that we do not
have any prior knowledge about the feature distribution
between positive and negative instances over the entire data.
Therefore we propose an heuristic approach to discretize
each continuous feature. First, we sample some text lines
from the the center of the web page and mark the sampled
text regions as topical region. Then the feature’s weighted
minimum/mean/maximum values, denote as F.MIN, F.MEAN
and F.MAX are calculate according to Eq. (1)(2)(3) over the
observed values in the topical region (tr) and non-topical
regions (non-tr).

F.MIN = α ·F.MINtr +(1−α) ·F.MINnon−tr (1)

F.MEAN = α ·F.MEANtr +(1−α) ·F.MEANnon−tr (2)

F.MAX = α ·F.MAX tr +(1−α) ·F.MAXnon−tr (3)
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where α is a weight value for balancing the importance
between the topical region and the non-topical regions. Here,
we set the value of α to 0.5. Based on the value of F.MIN,
F.MEAN and F.MAX, we then calculate two cut points F.Low
and F.High, where F.Low is the average of F.MIN and
F.MEAN, and F.High is the average of F.MEAN and F.MAX.
Now, the raw feature values can be represented by their
probabilities of falling into three scopes: Low, Middle and
High, respectively, as shown in Fig. 4. Note that each feature
could only has two non-zero values in Low, Middle and
High, and then, we take the larger one as the discretized
value of this feature.

C. Topical block segmentation and main text identifying

Once the features are extracted, we can construct a super-
vised learning classifier with a training set that the positive
and negative instants are labeled manually. Various typical
machine-learning based classifiers could be employed, in-
cluding Naive Bayes, C4.5, SVM and so on. The classifier
can determine whether a given text line belongs to main
text, and the text lines belongs to main text is called topical
lines. This initial classification, though rough, labels most
of the text lines correctly. However, if there are lengthy
copyright notices, comments, and/or descriptions of other
stories (not part of the main text), then those will likely to
be labeled as topical lines too. Also, if there are descriptions
around inline graphics that are part of some advertisement,
or lengthy textual advertisements, these may also be labeled
as topical lines. False negatives could also be observed when
a topical line is not sufficiently long. To address these issues,
a sliding window technique is firstly utilized to segment a
web page to several potential topical blocks. The process
is described below: First, we associate the ith text line with
a Boolean variable Mi (TRUE represents that the line is a
topical line and FALSE otherwise) according to the classifier
in the previous step; and then, scanning the entire HTML
source file from top to bottom with a sliding window. The
kth potential topical block is represented as Bk(startk,endk),
where startk is the start position of the block, and endk marks
where it ends. Bk(startk,endk) must satisfy the following
conditions:

1) Mi = FALSE, if startk −ϕ ≤ i ≤ startk or startk −ϕ ≤

i ≤ startk, where ϕ is the length of the sliding window
which is empirically set to 5 generally;

2) Mi = T RUE, if i = startk +1 or i = endk −1;
3) MAX

startk<i< j≤endk
di j ≤ ϕ , where Mi and M j are TRUE.

In other words, in a topical block, no more than ϕ − 1
continuous non-topical lines can be included. This way,
some false negatives from topical line detection can be
tolerated.

After extracting potential topical blocks, the proposed
algorithm identifies the most informative blocks. An infor-
mative block contains meaningful information that would
be the target of main text extraction. The other blocks that
contain noise information such as advertisements, menus, or
copyright statements are considered non-informative blocks.
A topical line of a web page usually has a high density of
texts with few links or images. Thus we can use a simple
Score to measure the informativeness of every HTML line:

Score(Pi) = |Ti|+ |Oi|+ |Di|− |Li|− |Ii| (4)

where |Ti|, |Oi|, |Di|, |Li|, |Ii| are the value of TextLength,
OutputTextLength, Density, LinkNum, ImgNum, respectively,
and normalized in the range of [0,1] as mentioned in Sec.
III-B. if Score(Pi) > 1.5, the line will be considered a
topical line. To recognize informative blocks, we can use the
average length of the plain text lines (T), the average length
of the output text line (O), the average ratio of plain text to
HTML bytes (D), the average number of links (L), and the
average number of images (I). The following heuristic rule
is used for evaluating the informativeness of a topical block:

Score(Bk) =

∑
Startk≤i≤Endk

Score(Pi)

Endk −Startk +1
(5)

If Score(Bk) > 1.5, the block will be considered an
informative block, and all the informative blocks will form
the main text. It is worth noting that this algorithm can help
reduce false positives from topical line detection. A long
line of advertising text and some descriptions of the other
stories and pictures, which could be marked as topical lines
in the previous step, are likely to be more isolated, i.e., more
likely to be surrounded by other non-topical text lines, than a
typical topical line. Therefore, the Score would be relatively
lower for any block that contains that line, when compared
with the score of a typical topical block where true topical
lines tend to stay closely together.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results of DGWC.
Both the performance and the effectiveness of main text
extraction are evaluated. All experiments were performed
on a cluster with 8 nodes connected by Gigabit Ethernet.
Each node comes with four quad-core E5-2650v2 processors
(2.6GHz), 128GB of RAM, 240GB of SSD disk and 600GB
of SAS disk.



Figure 5: Comparison on spent time between DGWC and
Scrapy

Figure 6: Impact of the spider number on spent time

For performance evaluation, we take the task that to get
eight thousand web pages from eight web sites. The sites are
listed in Tab. II that half of them are Chinese web sites and
the other half are English web sites. In each web site, we get
one thousand pages and parse them by BeautifulSoup
because it is more stable for performance comparison. We
first compare the DGWC and standalone version of Scrapy
by time spent, here the Scrapy is run on one node of the
cluster and the number of DGWC spiders is 10 (Note that
the spider is packaged by Docker and one node can run
multiple Docker packets). To exclude the interference of
network delay, we only count the time between response-
arrived and parsing-completed. The result is shown in Fig.
5, from which we can see that the DGWC spent obvious less
time than Scrapy standalone version. Note that the spent
time ratio of DGWC and Scrapy is a little larger than that
of one and spiders number, this is due to the jobs scheduling
by shared Redis consume some time. However, the results
of this experiment are sufficient to validate the efficiency
of DGWC. Furthermore, we count the spent time from one
spider to ten spiders, as shown in Fig. 6. We can see the
speed of time reducing is fall behind the speed of the spider
number increasing, which also demonstrate that scheduling
jobs between spiders will spent additional time. However, it
is worthy that the total time spent in parsing web pages is
indeed decreasing.

For the effectiveness valuation of main text extraction, we
first select 100 web pages from each web site’s 1000 web
pages that got in the performance experiment. Then, we con-
struct a dataset with total 800 web pages, and label the main
text manually. The main text extraction algorithm proposed

Table II: Comparison of main text extraction methods

Web Sites Our Algorithm WISDOM VIPS
P R F F F

www.sohu.com 0.976 0.987 0.981 0.955 0.832
www.163.com 0.973 0.989 0.981 0.926 0.771

www.sina.com.cn 0.943 0.967 0.955 0.912 0.692
www.qq.com 0.931 0.952 0.941 0.916 0.875

edition.cnn.com 0.951 0.979 0.965 0.931 0.856
www.nydailynews.com 0.912 0.943 0.927 0.926 0.801

www.newsday.com 0.961 0.983 0.972 0.942 0.855
www.bbc.com 0.955 0.973 0.964 0.933 0.792

in Sec. III with SVM as classifier is utilized, and a 10-flod
cross validation is applied to evaluate the effectiveness. We
adopt the metrics in [5] to assess our results, which include
precision, recall and F-measure. A higher value of precision
indicates fewer wrong classifications, while a higher value
of recall indicates less false negatives. They are calculated
as follows:

Precision =
|bag(C)∩bag(MT (WP))|

|bag(C)|
(6)

Recall =
|bag(C)∩bag(MT (WP))|

|MT (WP)|
(7)

where bag(C) denotes the bag of output text/contect associ-
ated with a chunk of text C. |bag(C)| is the length of output
text/content (measured in HTML bytes) in C. MT (WP) is
the main text of a web page WP. It is common to use the
harmonic mean of both measurements, called F-measure,
such as the F1-measure defined by Eq. (8) which weighs
precision and recall equally important.

F1−measure =
2 · precision · recall
precision+ recall

(8)

To validate the effectiveness, we compare our algorithm
with two well-known existing DOM based approach WIS-
DOM [6] and Vision-based approach VIPS [7] in accuracy.
The results are shown in Tab. II, from which we can see our
algorithm achieves high accuracy in main text extraction.

V. RELATED WORK

Various web crawlers such as Larbin [2],
Heritrix [3] and Scrapy [4], have been designed
for automatically online information extraction. However,
few crawler systems are considered carefully for parallel
implement and run to meet the requirement of massive
data extraction. Besides the performance, another problem
bought by the large amount of web sites is pages parsing.
In recent years, a large number of researches have
addressed to automatically identify information from
web sources [8]. Differentiated by their scopes, these
works can be categorized into Document Object Model
(DOM) based [6][9], vision-based [7][10], and statistics-
based [11][12] approaches. Among the three methods,
the first two both need to render the page, and exploit



specific extraction strategies during the extraction process.
They are indeed unsuit for the massive heterogeneous web
pages, thus only the statistics-based approaches can be used
in large-scale crawler systems. The exist statistics-based
approaches usually use density [11] or word count [12]
as statistics objects, however, more features in web pages
could be used to achieve better accuracy. In this paper, we
propose a distributed and generic web crawler system to
parallel access and parse web pages. And furthermore, a
self-designed main texts extraction algorithm is integrated
to parse web pages uniformly.

VI. CONCLUSION

This paper presents the design of a distributed and generic
web crawler system (DGWC) for online information extrac-
tion. To improve the performance, we take Redis as a
shared storage to schedule jobs among multiple Scrapy
spiders in order to parallel access and parse web pages.
Furthermore, the crawler program and dependencies are
packaged as a Docker container to make the crawler system
could be easily horizontal scaling. To extract main text from
various heterogeneous web pages, we propose a statistics-
based two stages approach. We first extract a set of features
and construct a supervised-learning classifier, then identify
topical lines using this classifier. To improve the accuracy,
a slide window is utilized to recognize potential topical
block and extract the final main text based on block score.
The experimental results show that DGWC has satisfactory
performance to extract meaningful information from massive
heterogeneous web pages.
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