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Abstract—The small companies become increasingly important
in bank’s lending business. But the challenge is how bank’s
credit assessment is made in a small amount of time and money.
Compare with the big companies, the small companies often
need a small amount of cash flow. They may not provide the
complete certificates or documents, so that the bank has to collect
information of the companies and evaluate their credit rating
especially by experts. For the bank, it is worthless to spend time
and money to investigate a small company, especially just to
lend several hundred thousand dollars. In the real life, credits of
most the companies are good, while only small of them cannot
repay for some reasons. The few number of small companies’
credit data is valuable while considerable unknowing credit
data of small companies is within reach. Therefore, the binary
classification of the good credit and the bad credit is asymmetry.
we choose supervised learning algorithm (Regularized Least
Squares Classification and SVM) and semi-supervised learning
algorithm (Transductive SVM and Deterministic Annealing Semi-
supervised SVM) to predict the credits of small companies. In
this paper, we conduct a series of experiments on credit datasets
with different proportion classification and the results show that
the Deterministic Annealing Semi-supervised SVM (DAS3VM)
performance better when the data set is rare and asymmetry.

I. INTRODUCTION

If a big company needs funds, it tends to get a bank loan.
The company has to fill out the loan application about loan
amount, loan purpose, repayment ability and repayment. There
are many basic data and supporting information submitted
along with an application, such as the corporate information,
enterprise information assets, corporate financial statements,
etc. Then, the bank’s credit evaluation experts will select
investigation items and formulate examine plans. They will
evaluate the enterprise by its strength of the economic, capital
structure, financial, operational efficiency, business prospects,
etc.

But for many small companies, they may not provide the
complete certificates or documents and they just need some
funds for a short-time liquidity [1, 2]. The bank has to gather
the information of the companies and evaluate their credit
rating especially by the experts. For banks, it is unworthy
to spend the same time and money on investigating a small
company which will just borrow several hundred thousand
dollars for a short time.

In the real life, credits of most the companies are good,
while only small of them cannot repay for some reasons. We
can only acquire a company’s credit standing after it’s loan
from the bank. The few number of small enterprise’ credit
data is valuable while considerable unknowing credit data of
small companies is within reach. It is convenient to acquire a
company’s basic information, online transaction data, product
comments, etc. Therefore, the binary classification of the good
credit and the bad credit is asymmetry.

In this paper, we briefly introduce the L2-SVM-MFN,
Transductive SVM (using L2-SVM-MFN) and Deterministic
Annealing Semi-supervised SVM (using L2-SVM-MFN). The
key idea of SVM is the classification hyperplane has to pass
through the low data density region. And another constraint
is that data points in each cluster on the same side of the
hyperplane have the same labels. It bases on the assumption
that points in a same cluster should have the similar labels. In
the semi-supervised SVM, the role of the unlabeled data is to
identify clusters and high density regions in the input space.

We conduct the experiment study on three different scale
data sets and it clearly shows that the DAS3VM behaves better
than the other three algorithm when the labeled data are small
and asymmetry.

This paper is arranged as follows. In section 2 we describe
the L2-SVM-MFN algorithm and present semi-supervised
SVM in section 3. In section 4 we illustrate the experiment.
Section 5 contains our conclusion.

II. L2-SVM-MFN

The problem is a binary classification with l labeled exam-
ples {xi, yi}li=1, the input xiϵR

n and the output yiϵ{−1,+1}
and the classifier is y = wTx + b. The original optimization
problem to solve the standard SVM [3] is:

min
(w,b)

1

2
(||w||2 + b) +

C

2

l∑
i

ξ2

s.t.yi(w
Txi + b) ≥ 1− ξi, i = 1, 2, . . . , l

(1)

Where C is the regularization parameter.



L2-SVM-MFN provides the following SVM optimization
problem:

w∗ = argmax
wϵRn

1
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l∑
i

l2(yiw
Txi) +

λ

2
||w||2 (2)

Fig. 1. l2 loss function

Where l2 is the loss function given by l2(f(x)) =
max(0, 1 − f(x))2, λ is a regularization parameter given by
λ = C−1 and the final classifier is y = w∗T

x.
In this function, we use the square of the Hinge Loss

rather than the Hinge Loss for easier derivation and the b is
regularized.

min
w

f(w) =
1

2

∑
iϵI(w)

cil2(yiw
Txi) +

λ

2
||w||2 (3)

Here we add constraint of the support vectors set I(w) =
{i : yi(w∗T

xi) < 1} and the loss cost ci. At the same time,
if the index set I(w) are independent of w and run over all
data points, this would simply be the objective function for
weighted linear regularized least squares (RLS) [4].

The gradient of f is given by X

∇f(w) = λw +XI(w)CI(w)[XI(w)w − YI(w)] (4)

Here, XI(w) is a matrix and it’s rows are the feature vectors
of training examples with respect to the index set I(w), YI(w)

is a column vector which composition labels of the examples,
and CI(w)is a diagonal matrix which diagonal are the costs ci
for these examples.

With the set I ⊂ {1, . . . ,m}, we define the function fI as

fI(w) =
λ

2
||w||2 + 1

2

∑
iϵI

cil2(yiw
Txi) (5)

We know that the fI is a strictly convex quadratic function,
so it has a unique minimizer.

The Newton method in [5] does the iterations of the form

wk+1 = wk + δknk (6)

Here, the δkϵR, the Newton search direction nkϵR
n is given

by wk:
nk = −∇f(wk)/[∇2f(wk)] (7)

Here, the ∇f(wk) is the gradient vector and the ∇2f(wk) is
the Hessian matrix of f at wk.

Algorithm 1 L2-SVM-MFN
Input: Training set {xi, yj}li=1.
Output: The optimize result w.

1.Choose a suitable w0, set k = 0.
2.Check if wk is the optimal solution of (3). If it is, end
the algorithm with return wk.
3.Ik = I(wk).

w = argmin
w

fI
k
(w)

4. L = {w = wk + δ(w − wk) : δ ≥ 0}.

δ∗ = argmin
wϵL

f(w)

Let wk+1 = wk + δ∗(w−wk), k = k+1, go back to the
step 2.

Algorithm L2-SVM-MFN would converges in a limited
number of iterations, it can be proved at [4].

III. SEMI-SUPERVISED LINEAR SVMS

Our data sets are l labeled examples {xi, yi}li=1 and u
unlabeled examples {x′

j}uj=1, the xi,x′
jϵR

n, yiϵ{+1,−1},
l ≪ u. Our goal is using the labeled examples and the
unlabeled examples to construe a liner classifier sign (wTx).

A. Transductive SVM

We assume that the examples xj are labeled with
y′jϵ{+1,−1}. The assumption that the classification hyper-
plane has to pass through the low data density region {xi, yi},
at the same time the unlabeled examples xj all have the real
labels, which means that the classification hyperplane also has
to pass through the low data {xi, yi} and {xj , y

′
j}. So the

unlabeled examples can help to display the data distribution.
Transductive SVM uses the unlabeled examples to help to
drive the classification hyperplane to pass through the real
low data density regions [6, 7].

The following optimization problem is the standard TSVM:

min
w,{y′

j}u
j=1

λ

2
||w||2 + 1

2l

l∑
i=1

l(yiw
Txi)

+
λ′

2u

u∑
j=1

l(y′jw
Tx′

j)

s.t.
1

u

u∑
j=1

max[0, sign(wTx′
j)] = r

(8)

Here, we use the Hinge Loss, l(f(x)) = max(0, 1 − f(x)).
λ is a regularization parameter, λ′ is a parameter provided



by the users and it controls the influence of unlabeled data.
For example, if we set λ′ to 0, it would the standard SVM.
The initial value of r can be get from the training set of the
positive class in labeled examples and can be adjusted by the
validation performance.

The optimization is implement in [8] by first using the
inductive SVM to label the unlabeled data and designation
a temp factor λ′∗ then iteratively switching labels to mini-
mize (8). Second uniformly increasing the value of the λ′∗.
Then retraining SVM to improve the objective function until
λ′∗ ≥ λ′ and the algorithm ends and output the result.

To use the L2-SVM-MFN, we consider the TSVM object
function with the L2-SVM loss function, l = l2. We can know
from the [9, 10] about the TSVM with L2-SVM-MFN and we
use the L2-SVM-MFN to train a classifier on labeled data, the
unlabeled data are temporary labeled based on the classifier.
Then we start from a small value of λ′∗, and pairs of unlabeled
data with opposite temporary labels switching these labels to
decrease the object function. We gradual increase λ′∗ by a
certain factor until λ′∗ ≥ λ′, the algorithm ends and output
the result.

B. Deterministic Annealing

The TSVM loss function over the unlabeled examples is
non-convex which makes it do not have a global optimal
solution and has a high time complexity in the solving
model. Deterministic Annealing [6, 11] based on the annealing
process makes the optimization problem process into a series
of temperature-dependent physical systems minimal of free
energy function. Therefore, it can avoid local minimum and
obtain the global minimum.

We first rewrite the TSVM object function:

w∗ = argmin
w,uj

u
j=1

λ

2
||w||2 + 1

2l

l∑
i=1

l2(w
Txi)

+
λ′

2u

u∑
j=1

(uj l2(w
Tx′

j) + (1− uj)l2(−wTx′
j))

(9)

Here, uj = (1 + yj)/2, we relax the unlabeled data by
max[0, 1 − |wTx|]2 = min[l2(w

Tx), l2(−wTx)]. Then we
rewrite the object function as following:

w∗
T =argmin

w,pj
u
j=1

λ

2
||w||2 + 1

2l

l∑
i=1

l2(yiw
Txi)

+
λ′

2u

u∑
j=1

(pj l2(w
Tx′

j) + (1− pj)l2(−wTx′
j))

+
T

2u

u∑
j=1

[pj log(pj) + (1− pj) log(1− pj)]

s.t.
1

u

u∑
j=1

pj = r

(10)

Here, we relax the binary variables uj to probability variables
pj and include entropy terms for the distributions defined by
pj . The r is the ratio of positive class in unlabeled examples.

And we use the DA loss function replace the l2 loss function,
with the decrease of the temperature T. The loss function
changes the shape from a squared-loss shape to the TSVM loss
function. The minimizer is slowly obtained as the temperature
is reduced to 0.

Fig. 2. DA loss function parameterized by T

The optimization is done with the decreasing of the T from
a high value towards 0. For each T, we first fix the p and
optimize the w with the L2-SVM-MFN; next, we fix the w,
construct the Lagrangian of (10) and let the partial derivative
of pj to 0 to optimize the pj with a hybrid combination of
Newton-Raphson iterations and the bisection method [12].

IV. EXPERIMENTAL RESULT AND ANALYSIS

We conduct supervised learning experiments and semi-
supervised learning experiments on three different credit data
sets.

A. Preparation for the Experiment

The data is about the enterprise credit information. We crawl
the information form the National Business Credit Information
publicity system and Alibaba1. We have collected millions
of companies’ basic information and product comments and
others. The data sets we have collected are usually noisy. We
find that during the crawling, some valuable companies’ basic
information has not proper storage or missing, such as the
financial reports and product comments. When the companies
information has been stored in our database, we randomly
select some companies with credit history for experiment. We
select some attributes of the companies and conduct the nu-
merical operation. Some large attributes may affect the small
attributes. In order to avoid this, we conduct normalization on
some attributes.

TABLE I
TWO-CLASS CREDIT DATA SETS

data sets l+ u r f
credit-one 4255 0.674 17
credit-two 2589 0.464 17

credit-three 1924 0.289 17

We randomly divide the examples into three different class
proportion data sets in Table I. l + u represents the number

1http://gsxt.saic.gov.cn/, https://s.1688.com/company/company search.htm



of labeled examples and unlabeled examples, f represents the
numbers of attributes, r represents the positive class ratio.

In our experiment, we use the reverse k-fold cross validation
to effectively avoid over-learning and the learning owe state
so that the final result is also more persuasive. Reverse k-
fold cross validation is a method similar to the k-fold cross
validation where the data sets are divided into k groups and
each group take turns to be chosen as the training set while the
remaining k − 1 groups together act as the test set. We have
collected the accuracy evaluate result, the recall of positive
examples, computation time and calculated the F-1 measure.
The final experiment result is the average of the k times test
results.

At this paper, we conduct experiments by using the Regu-
larized Least Squares (RLS) Classification, SVM (L2-SVM-
MFN), Transductive SVM (using L2-SVM-MFN), Determin-
istic Annealing Semi-supervised SVM (using L2-SVM-MFN)
while set the k = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 on
every data sets.

B. Experimental Result

Fig. 3. RLS, SVM, TSVM, DASVM: The Accuracy evaluate result on credit-
one for different k.

Here, we first conduct experiment on the data set credit-
one and the accuracy evaluate results are shown in Figure 3.
From the Figure 3, while the k = 5, 10, 20, the resultS of the
four algorithms have the similar results. But with the increase
of k, we can obviously find that the performance of the
DAS3VM is better than other three algorithms. We consider
the reason for this phenomenon is while the k = 5, 10, 20,
the number of labeled examples is enough for the supervised
learning algorithms; While the k ≥ 30, the number of labeled
examples is very few, especially when the value of k = 50,
the training set only have 2% of the data set (85 labeled
examples), the DAS3VM obviously performs better than other
three algorithms. The reason is that it can gradually use the
unlabeled examples to optimize the object function.

Fig. 4. RLS, SVM, TSVM, DASVM: The Accuracy evaluate on credit-two
for different k.

Fig. 5. RLS, SVM, TSVM, DASVM: The Accuracy evaluate on credit-three
for different k.

In the Figure 4 and Figure 5, we find the same result
as in Figure 3. DAS3VM performs better than other three
algorithms if the number of labeled examples in training set
is much less than than the test examples. Different with the
Figure 3, TSVM performs better than other supervised learning
algorithms in the most time.

The Figure 6 shows the accuracy of credit evaluate on the
three different proportion of the two class. Obviously, the
results on credit-one and credit-three are better than the credit-
two. We hold the view that the DASVM performs better on
the asymmetry data set (the majority of the examples are one
of the class). And the three curves are very flat even if the
labeled examples in the training set are difference in many
times (if the k = 10, there are 10% labeled examples; if the
k = 50, there are only 2% labeled examples.). So we believe
that the DAS3VM is a very good algorithm on credit data.



Fig. 6. DAS3VM:The Accuracy evaluate on credit-one, credit-two and credit-
three for different k.

Fig. 7. RLS, SVM, TSVM, DASVM: The computation time on credit-one
for different k.

Fig. 8. RLS, SVM, TSVM, DASVM: The computation time on credit-two
for different k.

Fig. 9. RLS, SVM, TSVM, DASVM: The computation time on credit-three
for different k.

TABLE II
RLS, SVM, TSVM, DASVM: THE RECALL ON THE CREDIT-ONE,

CREDIT-TWO AND CREDIT-THREE

credit-one RLS SVM TSVM DASVM
k=5 93.28 93.16 85.87 88.37
10 92.15 91.98 85.14 86.31
20 90.89 90.67 84.05 85.71
30 89.20 88.68 81.80 87.05
40 88.29 86.69 81.04 89.54
50 87.56 86.66 80.19 87.01
60 85.21 83.39 77.68 87.60
70 83.79 82.46 78.11 87.95
80 83.6 81.48 77.32 86.64
90 81.82 80.36 76.26 87.42
100 81.47 79.53 76.05 87.59

credit-two RLS SVM TSVM DASVM
k=5 67.97 62.52 62.48 71.54
10 66.05 66.12 66.01 67.60
20 62.55 62.58 63.77 67.30
30 61.38 61.24 63.13 64.93
40 60.26 59.80 60.88 55.81
50 59.36 59.07 60.14 62.08
60 59.00 58.73 59.17 62.74
70 58.10 58.27 58.90 62.99
80 56.08 55.87 57.89 62.53
90 57.56 56.82 58.08 60.55
100 55.89 55.48 56.96 58.78

credit-three RLS SVM TSVM DASVM
k=5 54.14 52.31 39.22 48.05
10 44.83 50.28 43.27 43.33
20 43.61 47.85 42.52 48.63
30 41.97 43.66 39.87 33.62
40 41.74 42.50 52.18 33.07
50 41.2 42.06 38.16 33.56
60 40.52 41.34 37.38 32.90
70 39.70 40.49 36.84 32.13
80 38.53 39.46 36.48 30.05
90 38.75 39.77 37.03 31.44
100 37.93 38.62 36.50 29.02

The Figure 7, Figure 8 and Figure 9 show that no matter
what value of k is, the computation time of DAS3VM is
the longest followed by the TSVM. The supervised learning
algorithms are the shortest and coincidence together in the
vicinity of 0 seconds. In the section 3, we have briefly intro-
duced the TSVM (using L2-SVM-MFN) and the Deterministic



TABLE III
TWO-CLASS DATASETS

credit-one k = 5 10 20 30 40 50 60 70 80 90 100
RLS 81.84 81.06 80.26 78.81 78.17 77.37 75.90 74.76 74.59 73.60 73.15
SVM 81.83 81.10 80.21 78.57 77.09 76.83 74.89 73.97 73.37 72.69 71.98

TSVM 78.71 78.13 77.01 74.83 74.21 73.36 71.28 71.63 70.85 70.02 69.84
DAS3VM 79.43 78.63 78.46 78.44 79.07 78.18 78.08 78.02 77.71 77.62 78.10
credit-two k = 5 10 20 30 40 50 60 70 80 90 100

RLS 65.33 64.00 61.82 60.90 59.77 59.09 58.50 57.76 56.44 57.29 55.92
SVM 63.45 64.05 61.85 60.87 59.50 58.92 58.54 57.91 56.41 57.10 55.92

TSVM 62.87 64.01 62.40 62.04 60.10 59.84 58.90 58.52 57.91 57.87 56.84
DAS3VM 70.07 64.61 64.41 63.25 57.84 61.40 61.68 62.07 61.76 60.84 59.50

credit-three k = 5 10 20 30 40 50 60 70 80 90 100
RLS 55.89 51.11 51.16 49.18 48.91 48.53 48.04 47.35 46.47 46.78 46.25
SVM 53.98 54.27 54.23 50.82 49.76 49.39 48.96 48.27 47.46 47.88 47.06

TSVM 47.20 51.19 51.16 48.69 54.23 47.07 46.38 45.85 45.52 46.06 45.64
DAS3VM 54.89 52.59 56.47 44.43 43.76 44.34 43.77 43.01 41.05 42.42 40.22

Annealing Semi-supervised SVM (using L2-SVM-MFN). We
know that the two semi-supervised learning algorithms are
more complex in object optimize compare with the RLS and
SVM. And the experiment results also prove the DAS3VM
cost more time in computation.

Here, we display the recall and F-1 measure of the four
algorithms on three data sets in Table II and Table III. As
shown in Table II shown, the recall of the DAS3VM on the
credit-one is better than the three algorithms if k ≥ 40. And
on the credit-two it perform better whether the k = 5, 10 or
50. But on the credit-three, the supervised learning algorithms
perform better. The F measure take the both accuracy and
recall into account, so it can better show the experiment results
of the algorithms. In the Table III, the F-1 measure also
indicate the DAS3VM perform good on the small business
credit prediction of the credit-one and credit-two.

V. CONCLUSION

In this paper, we present the algorithm Deterministic An-
nealing Semi-supervised SVM and conduct several experiment
on the small business credit data sets. The results shown in
this paper all indicate that the DAS3VM performs good on
the small business credit data sets, especially in the situation
that the labeled examples are few.
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